Lyapunov stability of linear commensurate order fractional systems is revisited with the energy balance principle. This methodology is based on the concept of fractional energy stored in inductor and capacitor components, where natural decrease of the stored energy is caused by internal Joule losses. Previous stability results are interpreted, thanks to an equivalent fictitious fractional RLC circuit. Energy balance is used to analyze the usual Lyapunov function and to provide a physical interpretation to the weighting positive matrix. Moreover, the classical linear matrix inequality (LMI) condition is interpreted in terms of internal and external Joule losses.

References

References
1.
Aguila-Camacho
,
N.
,
Duarte-Mermoud
,
M. A.
, and
Gallegos
,
J. A.
,
2014
, “
Lyapunov Functions for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
9
), pp.
2951
2957
.
2.
Chen
,
D.
,
Zhang
,
R.
,
Lin
,
X.
, and
Ma
,
X.
,
2014
, “
Fractional Order Lyapunov Stability Theorem and Its Application in Synchronization of Complex Dynamical Networks
,”
Comun. Nonlinear Sci. Numer. Simul.
,
19
(
12
), pp.
4105
4121
.
3.
Hu
,
J. B.
,
Lu
,
G. P.
,
Zhang
,
S. H.
, and
Zhao
,
L. D.
,
2015
, “
Lyapunov Stability Theorem About Fractional System Without and With Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
20
(
3
), pp.
905
913
.
4.
Li
,
Y.
, and
Chen
,
Y. Q.
,
2014
, “
Lyapunov Stability of Fractional Order Non Linear Systems: A Distributed Order Approach
,”
ICFDA’14
, Catania, June 23–25.
5.
Momani
,
S.
, and
Hadid
,
S.
,
2004
, “
Lyapunov Stability Solutions of Fractional Integrodifferential Equations
,”
Int. J. Math. Math. Sci.
,
47
, pp.
2503
2507
.
6.
Wang
,
X. Y.
, and
Song
,
J. M.
,
2009
, “
Synchronization of the Fractional Order Hyperchaos Lorentz Systems With Activation Feedback Control
,”
Commun. Nonlinear Sci. Num. Simul.
,
14
(
8
), pp.
3351
3357
.
7.
Da
,
L.
, and
Wang
,
X. Y.
,
2010
, “
Observer Based Decentralized Fuzzy Neuronal Sliding Mode Control for Interconnected Unknown Chaotic Systems Via Network Structure Adaptation
,”
Fuzzy Sets Syst.
,
161
(
15
), pp.
2066
2080
.
8.
Yuan
,
J.
,
Shi
,
B.
, and
Ji
,
W.
,
2013
, “
Adaptive Sliding Mode Control of a Novel Class of Fractional Chaotic Systems
,”
Adv. Math. Phys.
,
2013
, p.
576709
.
9.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2009
, “
Mittag Leffler Stability of Fractional Order Non Linear Dynamic Systems
,”
Automatica
,
45
(
8
), pp.
1965
1969
.
10.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2010
, “
Stability of Fractional Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–Leffler Stability
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1810
1821
.
11.
Fahd
,
J.
,
Thabet
,
A.
,
Emrah
,
G.
, and
Dumitru
,
B.
,
2011
, “
On the Mittag–Leffler Stability of Q-Fractional Nonlinear Dynamical Systems
,”
Proc. Rom. Acad., Ser. A
,
12
(
4/2011
), pp.
309
314
.
12.
Sadati
,
S. J.
,
Baleanu
,
D.
,
Ranjbar
,
A.
,
Ghaderi
,
R.
, and
Abdeljawad (Maraaba)
,
T.
,
2010
, “
Mittag–Leffler Stability Theorem for Fractional Nonlinear Systems With Delay
,”
Abstr. Appl. Anal.
,
2010
, p.
108651
.
13.
Boyd
,
S.
,
El
Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
14.
Sabatier
,
J.
,
Moze
,
M.
, and
Farges
,
C.
,
2010
, “
LMI Stability Conditions for Fractional Order Systems
,”
Comput. Math. Appl.
,
59
(5), pp.
1594
1609
.
15.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2011
, “
A Lyapunov Approach to the Stability of Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
437
445
.
16.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2013
, “
Lyapunov Stability of Linear Fractional Systems. Part 1: Definition of Fractional Energy and Part 2: Derivation of a Stability Condition
,”
ASME
Paper No. DETC2013-12824.
17.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2014
, “
Lyapunov Stability of Fractional Order Systems: The Two Derivatives Case
,”
ICFDA’14
, Catania, June 23–25.
18.
Ortega
,
R.
,
Loria
,
A.
,
Nicklasson
,
P. J.
, and
Sira-Ramirez
,
H.
,
1998
,
Passivity Based Control of Euler Lagrange Systems
,
Springer-Verlag
,
Berlin
.
19.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2015
, “
Lyapunov Stability of Non Commensurate Fractional Order Systems: An Energy Balance Approach
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041007
.
20.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
New York
.
21.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
22.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
State Variables and Transients of Fractional Order Differential Systems
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3117
3140
.
23.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2013
, “
The Infinite State Approach: Origin and Necessity
,”
Comput. Math. Appl.
,
66
(
5
), pp.
892
907
.
24.
Heleschewitz
,
D.
, and
Matignon
,
D.
,
1998
, “
Diffusive Realizations of Fractional Integro-Differential Operators: Structural Analysis Under Approximation
,”
Conference IFAC, System, Structure and Control
, Nantes, France, Vol. 2, pp.
243
248
.
25.
Montseny
,
G.
,
1998
, “
Diffusive Representation of Pseudo Differential Time Operators
,”
ESSAIM
, Vol.
5
, pp.
159
175
.
26.
Hartley
,
T. T.
,
Trigeassou
,
J. C.
,
Lorenzo
,
C. F.
, and
Maamri
,
N.
,
2015
, “
Energy Storage and Loss in Fractional Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061006
.
27.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2015
, “
Realizations for Determining the Energy Stored in Fractional Order Operators
,”
ASME IDETC-CIE Conference
, Boston, MA.
28.
Maamri
,
N.
,
Tari
,
M.
, and
Trigeassou
,
J. C.
,
2014
, “
Physical Interpretation and Initialization of the Fractional Integrator
,”
ICFDA’14
, Catania, June 23–25.
29.
Retiere
,
N.
, and
Ivanes
,
M.
,
1998
, “
Modeling of Electrical Machines by Implicit Derivative Half Order Systems
,”
IEEE Power Eng. Rev.
,
18
(
9
), pp.
62
64
.
30.
Matignon
,
D.
,
1998
, “
Stability Properties for Generalized Fractional Differential Systems
,”
ESSAIM
,
5
, pp.
145
158
.
31.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2010
, “
The Pseudo State Space Model of Linear Fractional Differential Systems
,”
FDA’2010 Conference
, Badajoz, Spain.
32.
Chen
,
C. T.
,
1984
,
Linear System Theory and Design
,
Holt, Rinehart and Winston
,
New York
.
33.
Niu
,
Y.
, and
Wang
,
X. Y.
,
2011
, “
An Anonymous Key Agreement Protocol Based on Chaotic Maps
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
4
), pp.
1986
1992
.
You do not currently have access to this content.