A capacitive microelectromechanical system (MEMS) powered by a Hindmarsh–Rose (HR)-like electronic oscillator is considered not only for actuation purposes but also to mimic the action of a natural pacemaker and nerves on a cardiac assist device or artificial heart. It is found that the displacement/flexion of the MEMS undergoes bursting and spiking oscillations resulting from the transfer of the electronic signal, when one varies the damping coefficient and the applied DC current.

References

References
1.
De Grave
,
A.
,
2004
, “
Conception intégrée des systèmes Microélectromécaniques
,” Thèse de doctorat, Génie industriel, Institut National Polytechnique de Grenoble, Grenoble, France, pp.
37
47
.
2.
Grayson Amy
,
C. R.
,
Shawge Rebecca
,
S.
,
Johnson Audrey
,
M.
,
Flynn Nolan
,
T.
,
Yawen
,
L.
,
Michael
,
J. C.
, and
Langer
,
R.
,
2004
, “
A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices
,”
Proc. IEEE
,
92
(
1
), pp.
6
21
.
3.
Ouakad
,
H. M.
,
2014
, “
Static Response and Natural Frequencies of Microbeams Actuated by Out-of-Plane Electrostatic Fringing-Fields
,”
Int. J. Non-Linear Mech.
,
63
, pp.
39
48
.
4.
Senturia
,
S. D.
,
2001
,
Microsystem Design
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, Chap. 6.
5.
Elwenspoek
,
M.
, and
Wiegerink
,
R.
,
2001
,
Mechanical Microsensors
,
Springer
,
Berlin
.
6.
Wang
,
Y. C.
,
Adams
,
S. G.
, and
Thorp
,
J. S.
,
1998
, “
Chaos in MEMS, Parameter Estimation and Its Potential Application
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
,
45
(
10
), pp.
1013
1020
.
7.
Luo
,
A. C. J.
, and
Wang
,
F.
,
2002
, “
Chaotic Motion in a Microelectromechanical System With Non-Linearity From Capacitors
,”
Commun. Nonlinear Sci. Numer. Simul.
,
7
(1–2), pp.
31
49
.
8.
De
,
S. K.
, and
Aluru
,
N. R.
,
2005
, “
Complex Oscillations and Chaos in Electrostatic Microelectromechanical Systems Under Superharmonic Excitations
,”
Phys. Rev. Lett.
,
94
(
20
), p.
204101
.
9.
Rhoads
,
J. F.
,
Shaw
,
S. W.
, and
Turner
,
K. L.
,
2006
, “
The Nonlinear Response of Resonant Microbeam Systems With Purely-Parametric Electrostatic Actuation
,”
J. Micromech. Microeng.
,
16
(
5
), pp.
890
899
.
10.
Kitio Kwuimy
,
C. A.
, and
Woafo
,
P.
,
2010
, “
Modeling and Dynamics of a Self-Sustained Electrostatic Microelectromechanical System
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
2
), p.
021010
.
11.
Simo
,
H.
, and
Woafo
,
P.
,
2011
, “
Bursting Oscillations in Electromechanical Systems
,”
Mech. Res. Commun.
,
38
(
8
), pp.
537
541
.
12.
Younis
,
M.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics
(Series on Microsystems), Vol.
20
,
Springer
,
Berlin
.
13.
Yamapi
,
R.
, and
Woafo
,
P.
,
2005
, “
Dynamics and Synchronization of Coupled Self-Sustained Electromechanical Devices
,”
J. Sound Vib.
,
285
(4–5), pp.
1151
1170
.
14.
Kitio Kwuimy
,
C. A.
, and
Woafo
,
P.
,
2007
, “
Dynamics of a Self-Sustained Electromechanical System With Flexible Arm and Cubic Coupling
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
8
), pp.
1504
1517
.
15.
Kitio Kwuimy
,
C. A.
, and
Woafo
,
P.
,
2008
, “
Dynamics, Chaos and Synchronization of Self-Sustained Electromechanical System With Clamped-Free Flexible Arm
,”
Nonlinear Dyn.
,
53
(
3
), pp.
201
213
.
16.
Hindmarsh
,
J. L.
, and
Rose
,
R. M.
,
1984
, “
A Model of Neuronal Bursting Using Three Coupled First Order Differential
,”
Proc. R. Soc. London, Ser. B
,
221
(
1222
), pp.
87
102
.
17.
Volos
,
C. K.
,
Kyprianidis
,
I. M.
,
Stouboulos
,
I. N.
,
Tlelo-Cuaulte
,
E.
, and
Vaidyanathan
,
S.
,
2015
, “
Memristor: A New Concept in Synchronization of Coupled Neuromorphic Circuits
,”
J. Eng. Sci. Technol. Rev.
,
8
(
2
), pp.
157
173
.
You do not currently have access to this content.