A necessary condition for high-fidelity dynamic simulation of belt-drives is to accurately predict the belt stresses, pulley angular velocities, belt slip, and belt-drive energy efficiency. In previous papers, those quantities were predicted using thin shell, beam, or truss elements along with a Coulomb friction model. However, flat rubber belts have a finite thickness and the reinforcements are typically located near the top surface of the belt. In this paper, the effect of the belt thickness on the aforementioned response quantities is studied using a two-pulley belt-drive. The belt rubber matrix is modeled using three-dimensional brick elements. Belt reinforcements are modeled using one-dimensional truss elements at the top surface of the belt. Friction between the belt and the pulleys is modeled using an asperity-based Coulomb friction model. The pulleys are modeled as cylindrical rigid bodies. The equations of motion are integrated using a time-accurate explicit solution procedure.

References

References
1.
Euler
,
M. L.
,
1762
, “
Remarques sur l'effect du frottement dans l'equilibre
,”
Mem. Acad. Sci.
, pp.
265
278
.
2.
Grashof
,
B. G.
,
1883
, Theoretische Maschinenlehre, Bd. Theorie der getriebe und der mechanischen messinstrumente, Vol.
2
,
Leopold Voss
,
Hamburg
.
3.
Fawcett
,
J. N.
,
1981
, “
Chain and Belt Drives—A Review
,”
Shock Vib. Dig.
,
13
(
5
), pp.
5
12
.
4.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
London
, Chap. 8.
5.
Bechtel
,
S. E.
,
Vohra
,
S.
,
Jacob
,
K. I.
, and
Carlson
,
C. D.
,
2000
, “
The Stretching and Slipping of Belts and Fibers on Pulleys
,”
ASME J. Appl. Mech.
,
67
(
1
), pp.
197
206
.
6.
Townsend
,
W. T.
, and
Salisbury
,
J. K.
,
1988
, “
The Efficiency Limit of Belt and Cable Drives
,”
ASME J. Mech., Transm., Autom. Des.
,
110
(
3
), pp.
303
307
.
7.
Leamy
,
M. J.
, and
Wasfy
,
T. M.
,
2002
, “
Analysis of Belt-Drive Mechanics Using a Creep-Rate Dependent Friction Law
,”
ASME J. Appl. Mech.
,
69
(
6
), pp.
763
771
.
8.
Oden
,
J. T.
, and
Martins
,
J. A. C.
,
1985
, “
Models and Computational Methods for Dynamic Friction Phenomena
,”
Comput. Methods Appl. Mech. Eng.
,
52
, pp.
527
634
.
9.
Makris
,
N.
, and
Constantinou
,
M. C.
,
1991
, “
Analysis of Motion Resisted by Friction. II. Velocity-Dependent Friction
,”
Mech. Struct. Mach.
,
19
(
4
), pp.
501
526
.
10.
Leamy
,
M. J.
, and
Wasfy
,
T. M.
,
2001
, “
Dynamic Finite Element Modeling of Belt-Drives
,”
18th Biennial Conference on Mechanical Vibration and Noise
, ASME International DETC, Pittsburgh, PA.
11.
Leamy
,
M. J.
, and
Wasfy
,
T. M.
,
2002
, “
Transient and Steady-State Dynamic Finite Element Modeling of Belt-Drives
,”
ASME J. Dyn. Syst., Meas., Control
,
124
(
4
), pp.
575
581
.
12.
Pietra
,
L. D.
, and
Timpone
,
F.
,
2013
, “
Tension in a Flat Belt Transmission: Experimental Investigation
,”
Mech. Mach. Theory
,
70
, pp.
129
156
.
13.
Leamy
,
M. J.
, and
Wasfy
,
T. M.
,
2001
, “
Dynamic Finite Element Modeling of Belt-Drives Including One-Way Clutches
,”
ASME International Mechanical Engineering Congress and Exposition
, New York, NY.
14.
Meckstroth
,
R. J.
,
Wasfy
,
T. M.
, and
Leamy
,
M. J.
,
2004
, “
Finite Element Study of Dynamic Response of Serpentine Belt-Drives With Isolator Clutches
,”
CAD/CAM/CAE Technology and Design Tools
,
SAE International
, Detroit, MI.
15.
Wasfy
,
T. M.
, and
Leamy
,
M. J.
,
2002
, “
Effect of Bending on the Dynamic and Steady-State Responses of Belt-Drives
,”
27th Biennial Mechanisms and Robotics Conference
, ASME International DETC, Montreal, Canada.
16.
Wasfy
,
T. M.
,
2003
, “
Asperity Spring Friction Model With Application to Belt-Drives
,”
ASME
Paper No. DETC2003-48343.
17.
Leamy
,
M. J.
,
Meckstroth
,
R. J.
, and
Wasfy
,
T. M.
,
2004
, “
Finite Element Study of Belt-Drive Frictional Contact Under Harmonic Excitation
,”
CAD/CAM/CAE Technology and Design Tools
,
SAE International
, Detroit, MI.
18.
Leamy
,
M. J.
, and
Wasfy
,
T. M.
,
2005
, “
Time-Accurate Finite Element Modeling of the Transient, Steady-State, and Frequency Responses of Serpentine and Timing Belt-Drives
,”
Int. J. Veh. Des.
,
39
(
3
), pp.
272
297
.
19.
Wasfy
,
T. M.
,
Leamy
,
M. J.
, and
Meckstroth
,
R. J.
,
2004
, “
Prediction of System Natural Frequencies Using an Explicit Finite Element Code With Application to Belt-Drives
,”
ASME
Paper No. DETC2004-57117.
20.
Firbank
,
T. C.
,
1970
, “
Mechanics of the Belt Drive
,”
Int. J. Mech. Sci.
,
12
(
12
), pp.
1053
1063
.
21.
Gerbert
,
G. G.
,
1991
, “
On Flat Belt Slip
,”
Vehicle Tribology
(Tribology Series 16),
Elsevier
,
Amsterdam
, pp.
333
339
.
22.
Gerbert
,
G. G.
,
1996
, “
Belt Slip—A Unified Approach
,”
ASME J. Mech. Des.
,
118
(
3
), pp.
432
438
.
23.
Alciatore
,
D. G.
, and
Traver
,
A. E.
,
1995
, “
Multipulley Belt Drive Mechanics: Creep Theory vs Shear Theory
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
506
511
.
24.
Kong
,
L.
, and
Parker
,
R. G.
,
2005
, “
Microslip Friction in Flat Belt Drives
,”
J. Mech. Eng. Sci.
,
219
(
10
), pp.
1097
1106
.
25.
Kim
,
D.
,
Leamy
,
M. J.
, and
Ferri
,
A.
,
2009
, “
Dynamic Modeling of Flat-Belt Drives Using the Elastic-Perfectly Plastic Friction Law
,”
ASME
Paper No. DETC2009-87296.
26.
Kerkkanen
,
K. S.
,
Garcia-Vallejo
,
D.
, and
Mikkola
,
A. M.
,
2006
, “
Modeling of Belt-Drives Using Large Deformation Finite Element Formulation
,”
Nonlinear Dyn.
,
43
(
3
), pp.
239
256
.
27.
Cepon
,
G.
,
Manin
,
L.
, and
Boltezar
,
M.
,
2011
, “
Validation of a Flexible Multibody Belt-Drive Model
,”
J. Mech. Eng.
,
57
, pp.
539
546
.
28.
Chen
,
W.-H.
, and
Shien
,
C.-J.
,
2003
, “
On Angular Speed Loss Analysis of Flat Belt Transmission System by Finite Element Method
,”
Int. J. Comput. Eng. Sci.
,
4
(
1
), pp.
1
18
.
29.
Wasfy
,
T. M.
,
Wasfy
,
H. M.
, and
Peters
,
J. M.
,
2013
, “
Prediction of the Normal and Tangential Friction forces for Thick Flat Belts Using an Explicit Finite Element Code
,”
ASME
Paper No. DETC2013-13714.
30.
Yildiz
,
C.
,
Wasfy
,
T. M.
,
Wasfy
,
H. M.
, and
Peters
,
J. M.
,
2015
, “
Effect of Material and Geometric Parameters on the Steady-State Belt Stresses and Belt Slip for Flat Belt-Drives
,”
ASME
Paper No. DETC 2015-47147.
31.
Wasfy
,
T. M.
,
2004
, “
Modeling Spatial Rigid Multibody Systems Using an Explicit-Time Integration Finite Element Solver and a Penalty Formulation
,”
ASME
Paper No. DETC2004-57352.
32.
Wasfy
,
T. M.
,
2001
, “
Lumped-Parameters Brick Element for Modeling Shell Flexible Multibody Systems
,”
18th Biennial Conference on Mechanical Vibration and Noise
, ASME International DETC, Pittsburgh, PA.
33.
Wasfy
,
T. M.
,
2003
, “
Edge Projected Planar Rectangular Element for Modeling Flexible Multibody Systems
,”
ASME
, Paper No. DETC2003-48351.
34.
Wasfy
,
T. M.
, and
O'Kins
,
J.
,
2009
, “
Finite Element Modeling of the Dynamic Response of Tracked Vehicles
,”
ASME
Paper No. DETC 2009-86563.
35.
DIS (Dynamic Interactions Simulator)
,
2015
, “
Advanced Science and Automation Corp.
,” http://www.ascience.com/ScProducts.htm
You do not currently have access to this content.