Gyroelastic body refers to a flexible structure with a distribution of stored angular momentum (called gyricity). In previous studies, it was assumed that each volume element of the structure possesses an infinitesimal spinning rotor so that the distribution of the gyricity is continuous. However, the momentum devices must be discretely distributed in engineering applications; therefore, this paper studies the gyroelastic body formed by directly mounting a set of variable speed control moment gyroscopes (CMGs) on the flexible structure. The detailed dynamics of the CMGs is incorporated to capture the interactions between the CMGs and the structure. The gyroelastic modes and pseudorigid modes are discussed based on the linearized mathematical model. The examples of a gyroelastic beam and a gyroelastic parabolic structure demonstrate several involved concepts and properties.

References

References
1.
D'Eleuterio
,
G. M. T.
, and
Hughes
,
P. C.
,
1984
, “
Dynamics of Gyroelastic Continua
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
412
422
.
2.
Hughes
,
P. C.
, and
D'Eleuterio
,
G. M. T.
,
1986
, “
Modal Parameter Analysis of Gyroelastic Continua
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
918
924
.
3.
D'Eleuterio
,
G. M. T.
, and
Hughes
,
P. C.
,
1987
, “
Dynamics of Gyroelastic Spacecraft
,”
J. Guid. Control Dyn.
,
10
(
4
), pp.
401
405
.
4.
Damaren
,
C. J.
, and
D'Eleuterio
,
G. M. T.
,
1989
, “
Optimal Control of Large Space Structures Using Distributed Gyricity
,”
J. Guid. Control Dyn.
,
12
(
5
), pp.
723
731
.
5.
Damaren
,
C. J.
, and
D'Eleuterio
,
G. M. T.
,
1991
, “
Controllability and Observability of Gyroelastic Vehicles
,”
J. Guid. Control Dyn.
,
14
(
5
), pp.
886
894
.
6.
Chee
,
S. A.
, and
Damaren
,
C. J.
,
2015
, “
Optimal Gyricity Distribution for Space Structure Vibration Control
,”
J. Guid. Control Dyn.
,
38
(
7
), pp.
1218
1228
.
7.
Zee
,
R. E.
, and
Heppler
,
G. R.
,
1994
, “
Dynamics of Gyroelastic Beams
,”
AIAA
Paper No. 94-1438-CP.
8.
Yamanaka
,
K.
,
Heppler
,
G. R.
, and
Huseyin
,
K.
,
1996
, “
Stability of Gyroelastic Beams
,”
AIAA J.
,
34
(
6
), pp.
1270
1278
.
9.
Hassanpour
,
S.
, and
Heppler
,
G. R.
,
2016
, “
Dynamics of 3D Timoshenko Gyroelastic Beams With Large Attitude Changes for the Gyros
,”
Acta Astronaut.
,
118
, pp.
33
48
.
10.
Hassanpour
,
S.
, and
Heppler
,
G. R.
,
2016
, “
Approximation of Infinitesimal Rotations in Calculus of Variations
,”
J. Guid. Control Dyn.
,
39
(
3
), pp.
705
712
.
11.
Yang
,
L. F.
,
Mikulas
,
M. M.
, Jr.
, and
Park
,
K. C.
,
1995
, “
Slewing Maneuvers and Vibration Control of Space Structures by Feedforward/Feedback Moment-Gyro Controls
,”
ASME J. Dyn. Syst., Meas., Control
,
117
(
3
), pp.
343
351
.
12.
Shi
,
J. F.
, and
Damaren
,
C. J.
,
2005
, “
Control Law for Active Structural Damping Using a Control Moment Gyro
,”
J. Guid. Control Dyn.
,
28
(
3
), pp.
550
553
.
13.
Forbes
,
J. R.
, and
Damaren
,
C. J.
,
2009
, “
Robust Control of a Vibrating Beam Using the Hybrid Passivity and Finite Gain Stability Theorem
,”
AIAA
Paper No. 2009-5787.
14.
Brocato
,
M.
, and
Capriz
,
G.
,
2001
, “
Gyrocontinua
,”
Int. J. Solids Struct.
,
38
(6–7), pp.
1089
1103
.
15.
Brocato
,
M.
, and
Capriz
,
G.
,
2009
, “
Control of Beams and Chains Through Distributed Gyroscopes
,”
AIAA J.
,
47
(
2
), pp.
294
302
.
16.
Peck
,
M.
,
2004
, “
Practicable Gyroelastic Technology
,”
27th Annual AAS Guidance and Control Conference
, Breckenridge, CO, Feb. 4–8, Paper No. AAS 04-023.
17.
Ford
,
K. A.
, and
Hall
,
C. D.
,
1997
, “
Flexible Spacecraft Reorientations Using Gimbaled Momentum Wheels
,”
AAS/AIAA
Paper No. 97-723.
You do not currently have access to this content.