Two approaches are commonly used for handling frictional contact within the framework of the discrete element method (DEM). One relies on the complementarity method (CM) to enforce a nonpenetration condition and the Coulomb dry-friction model at the interface between two bodies in mutual contact. The second approach, called the penalty method (PM), invokes an elasticity argument to produce a frictional contact force that factors in the local deformation and relative motion of the bodies in contact. We give a brief presentation of a DEM-PM contact model that includes multi-time-step tangential contact displacement history. We show that its implementation in an open-source simulation capability called Chrono is capable of accurately reproducing results from physical tests typical of the field of geomechanics, i.e., direct shear tests on a monodisperse material. Keeping track of the tangential contact displacement history emerges as a key element of the model. We show that identical simulations using contact models that include either no tangential contact displacement history or only single-time-step tangential contact displacement history are unable to accurately model the direct shear test.

References

References
1.
Tasora
,
A.
, and
Anitescu
,
M.
,
2010
, “
A Convex Complementarity Approach for Simulating Large Granular Flows
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
), pp.
1
10
.
2.
Stewart
,
D. E.
,
2000
, “
Rigid-Body Dynamics With Friction and Impact
,”
SIAM Rev.
,
42
(
1
), pp.
3
39
.
3.
Anitescu
,
M.
, and
Tasora
,
A.
,
2010
, “
An Iterative Approach for Cone Complementarity Problems for Nonsmooth Dynamics
,”
Comput. Optim. Appl.
,
47
(
2
), pp.
207
235
.
4.
O'Sullivan
,
C.
,
2011
, “
Particle-Based Discrete Element Modeling: Geomechanics Perspective
,”
Int. J. Geomech.
,
11
(
6
), pp.
449
464
.
5.
Cundall
,
P.
, and
Strack
,
O.
,
1979
, “
A Discrete Element Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
.
6.
Pöschel
,
T.
, and
Schwager
,
T.
,
2005
,
Computational Granular Dynamics: Models and Algorithms
,
Springer
,
Berlin
.
7.
Kruggel-Emden
,
H.
,
Simsek
,
E.
,
Rickelt
,
S.
,
Wirtz
,
S.
, and
Scherer
,
V.
,
2007
, “
Review and Extension of Normal Force Models for the Discrete Element Method
,”
Powder Technol.
,
171
(
3
), pp.
157
173
.
8.
Kruggel-Emden
,
H.
,
Wirtz
,
S.
, and
Scherer
,
V.
,
2008
, “
A Study of Tangential Force Laws Applicable to the Discrete Element Method (DEM) for Materials With Viscoelastic or Plastic Behavior
,”
Chem. Eng. Sci.
,
63
(
6
), pp.
1523
1541
.
9.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.
10.
Fleischmann
,
J. A.
,
Drugan
,
W. J.
, and
Plesha
,
M. E.
,
2013
, “
Direct Micromechanics Derivation and DEM Confirmation of the Elastic Moduli of Isotropic Particulate Materials, Part I: No Particle Rotation
,”
J. Mech. Phys. Solids
,
61
(
7
), pp.
1569
1584
.
11.
Fleischmann
,
J. A.
,
Drugan
,
W. J.
, and
Plesha
,
M. E.
,
2013
, “
Direct Micromechanics Derivation and DEM Confirmation of the Elastic Moduli of Isotropic Particulate Materials, Part II: Particle Rotation
,”
J. Mech. Phys. Solids
,
61
(
7
), pp.
1585
1599
.
12.
Kruyt
,
N. P.
,
2014
, “
Micromechanical Study of Elastic Moduli of Three-Dimensional Granular Assemblies
,”
Int. J. Solids Struct.
,
51
(
13
), pp.
2336
2344
.
13.
Samiei
,
K.
,
Peters
,
B.
,
Bolten
,
M.
, and
Frommer
,
A.
,
2013
, “
Assessment of the Potentials of Implicit Integration Method in Discrete Element Modelling of Granular Matter
,”
Comput. Chem. Eng.
,
49
, pp.
183
193
.
14.
“Chrono,” Last accessed Mar. 19,
2015
, http://projectchrono.org/chronoengine/
15.
“LIGGGHTS,” Last accessed Mar. 19,
2015
, http://www.cfdem.com/
16.
Silbert
,
L. E.
,
Ertaş
,
D.
,
Grest
,
G. S.
,
Halsey
,
T. C.
,
Levine
,
D.
, and
Plimpton
,
S. J.
,
2001
, “
Granular Flow Down an Inclined Plane: Bagnold Scaling and Rheology
,”
Phys. Rev. E
,
64
(
5
), p.
051302
.
17.
Zhang
,
H. P.
, and
Makse
,
H. A.
,
2005
, “
Jamming Transition in Emulsions and Granular Materials
,”
Phys. Rev. E
,
72
(
1
), p.
011301
.
18.
Fleischmann
,
J.
,
2015
,“
DEM-PM Contact Model With Multi-Step Tangential Contact Displacement History
,” Simulation-Based Engineering Laboratory, University of Wisconsin-Madison, Technical Report No. TR-2015-06.
19.
Gilardi
,
G.
, and
Sharf
,
I.
,
2002
, “
Literature Survey of Contact Dynamics Modelling
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1213
1239
.
20.
Heyn
,
T.
,
2013
, “
On the Modeling, Simulation, and Visualization of Many-Body Dynamics Problems With Friction and Contact
,” Ph.D. thesis, Department of Mechanical Engineering,
University of Wisconsin–Madison
,
Madison, WI
.
21.
Koshy
,
C. S.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2013
, “
Study of the Effect of Contact Force Model on the Dynamic Response of Mechanical Systems With Dry Clearance Joints: Computational and Experimental Approaches
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
325
338
.
22.
O'Sullivan
,
C.
, and
Bray
,
J. D.
,
2004
, “
Selecting a Suitable Time Step for Discrete Element Simulations That Use the Central Difference Time Integration Scheme
,”
Eng. Comput.
,
21
(
2–4
), pp.
278
303
.
23.
Bardet
,
J.-P.
,
1997
,
Experimental Soil Mechanics
,
Prentice Hall
,
Upper Saddle River, NJ
.
24.
Mitchell
,
J. K.
, and
Soga
,
K.
,
2005
,
Fundamentals of Soil Behavior
,
Wiley
,
Hoboken, NJ
.
25.
Fleischmann
,
J. A.
,
2013
, “
Micromechanics-Based Continuum Constitutive Modeling of Isotropic Non-Cohesive Particulate Materials, Informed and Validated by the Discrete Element Method
,” Ph.D. thesis, Department of Engineering Mechanics,
University of Wisconsin–Madison
,
Madison, WI
.
26.
Vermeer
,
P. A.
, and
de Borst
,
R.
,
1984
, “
Non-Associated Plasticity for Soils, Concrete and Rock
,”
Heron
,
29
(
3
), pp.
1
64
.
27.
Fleischmann
,
J. A.
,
Plesha
,
M. E.
, and
Drugan
,
W. J.
,
2013
, “
Quantitative Comparison of Two-Dimensional and Three-Dimensional Discrete Element Simulations of Nominally Two-Dimensional Shear Flow
,”
Int. J. Geomech.
,
13
(
3
), pp.
205
212
.
28.
Cho
,
G.-C.
,
Dodds
,
J.
, and
Santamarina
,
J. C.
,
2006
, “
Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands
,”
J. Geotech. Geoenviron. Eng.
,
132
(
5
), pp.
591
602
.
29.
Cheng
,
Y. P.
, and
Minh
,
N. H.
,
2009
, “
DEM Investigation of Particle Size Distribution Effect on Direct Shear Behaviour of Granular Agglomerates
,”
6th International Conference on Micromechanics of Granular Media
, Golden, CO, July 13–17, pp.
401
404
.
30.
Härtl
,
J.
, and
Ooi
,
J. Y.
,
2008
, “
Experiments and Simulations of Direct Shear Tests: Porosity, Contact Friction and Bulk Friction
,”
Granular Matter
,
10
(
4
), pp.
263
271
.
You do not currently have access to this content.