Regarding constrained mechanical systems, we are faced with index-3 differential-algebraic equation (DAE) systems. Direct discretization of the index-3 DAE systems only enforces the position constraints to be fulfilled at the integration-time points, but not the hidden constraints. In addition, order reduction effects are observed in the velocity variables and the Lagrange multipliers. In literature, different numerical techniques have been suggested to reduce the index of the system and to handle the numerical integration of constrained mechanical systems. This paper deals with an alternative concept, called collocated constraints approach. We present index-2 and index-1 formulations in combination with implicit Runge–Kutta methods. Compared with the direct discretization of the index-3 DAE system, the proposed method enforces also the constraints on velocity and—in case of the index-1 formulation—the constraints on acceleration level. The proposed method may very easily be implemented in standard Runge–Kutta solvers. Here, we only discuss mechanical systems. The presented approach can, however, also be applied for solving nonmechanical higher-index DAE systems.

References

1.
Ascher
,
U. M.
,
Chin
,
H.
,
Petzold
,
L. R.
, and
Reich
,
S.
,
1995
, “
Stabilization of Constrained Mechanical Systems With DAEs and Invariant Manifolds
,”
Mech. Struct. Mach.
,
23
(
2
), pp.
125
157
.
2.
Ascher
,
U. M.
, and
Petzold
,
L. R.
,
1993
, “
Stability of Computational Methods for Constrained Dynamics Systems
,”
SIAM J. Sci., Stat. Comput.
,
14
(
1
), pp.
95
120
.
3.
Brenan
,
K. E.
,
Campbell
,
S. L. V.
, and
Petzold
,
L. R.
,
1989
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
,
Society for Industrial and Applied Mathematics
,
North-Holland/New York
.
4.
Hairer
,
E.
,
Norsett
,
S. P.
, and
Wanner
,
G.
,
2009
,
Solving Ordinary Differential Equations I: Nonstiff Problems
, 3rd ed.,
Springer
,
Berlin
.
5.
Hairer
,
E.
, and
Wanner
,
G.
,
2010
,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
, 2nd ed.,
Springer
,
Berlin
.
6.
Petzold
,
L. R.
,
1982
, “
Differential-Algebraic Equations are Not ODE's
,”
SIAM J. Sci., Stat. Comput.
,
3
(
3
), pp.
367
384
.
7.
Baumgarte
,
J. W.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamic Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.
8.
Eich
,
E.
,
1993
, “
Convergence Results for a Coordinate Projection Method Applied to Mechanical Systems With Algebraic Constraints
,”
SIAM J. Numer. Anal.
,
30
(
5
), pp.
1467
1482
.
9.
Eich-Soellner
,
E.
, and
Führer
,
C.
,
1998
,
Numerical Methods in Multibody Dynamics
,
B. G. Teubner, Stuttgart
.
10.
Lubich
,
C.
,
1991
, “
Extrapolation Integrators for Constrained Multibody Systems
,”
Impact Comput. Sci. Eng.
,
3
(
3
), pp.
213
234
.
11.
Maple-Documentation
,” Waterloo Maple Inc. (Maplesoft), http://www.maplesoft.com.
12.
Gear
,
C. W.
,
Gupta
,
G. K.
, and
Leimkuhler
,
B. J.
,
1985
, “
Automatic Integration of the Euler–Lagrange Equations With Constraints
,”
J. Comp. Appl. Math.
,
12–13
, pp.
77
90
.
13.
Garcia de Jalon
,
J.
, and
Bayo
,
E.
,
Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge
,
Springer
,
New York
.
14.
Bayo
,
E.
,
Garcia de Jalon
,
J.
, and
Serna
,
M. A.
,
1988
, “
A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
183
195
.
15.
Haug
,
E. J.
, and
Yen
,
J.
,
1992
, “
Implicit Numerical Integration of Constrained Equations of Motion Via Generalized Coordinate Partitioning
,”
ASME J. Mech. Des.
,
114
(
2
), pp.
296
304
.
16.
Kim
,
S. S.
, and
Vanderploeg
,
M. J.
,
1986
, “
QR Decomposition for State Space Representation of Constrained Mechanical Dynamic Systems
,”
J. Mech. Trans.
,
108
(
2
), pp.
183
188
.
17.
Mani
,
N. K.
,
Haug
,
E. J.
, and
Atkinson
,
K. E.
,
1985
, “
Application of Singular Value Decomposition for Analysis of Mechanical System Dynamics
,”
J. Mech. Trans. Auto. Des.
,
107
(
1
), pp.
82
87
.
18.
Wehage
,
R. A.
, and
Haug
,
E. J.
,
1982
, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Systems
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
247
255
.
19.
Führer
,
C.
, and
Leimkuhler
,
B. J.
,
1991
, “
Numerical Solution of DAEs for Constrained Mechanical Motion
,”
Numer. Math.
,
59
, pp.
5
69
.
20.
Mattsson
,
S. E.
, and
Söderlind
,
G.
,
1993
, “
Index Reduction in Differential-Algebraic Equations Using Dummy Derivatives
,”
SIAM J. Sci. Comput.
,
14
(
3
), pp.
677
692
.
21.
Kunkel
,
P.
, and
Mehrmann
,
V.
,
2004
, “
Index Reduction for Differential-Algebraic Equations by Minimal Extension
,”
ZAMM—J. Appl. Math. Mech.
,
84
(
9
), pp.
579
597
.
22.
Simeon
,
B.
,
2013
,
Computational Flexible Multibody Dynamics: A Differential-Algebraic Approach
,
Springer
,
Berlin
.
23.
Masarati
,
P.
,
2011
, “
Constraint Stabilization of Mechanical Systems in ODE Form
,”
Proc. Inst. Mech. Eng. Part K
,
225
(
1
), pp.
12
33
.
24.
Masarati
,
P.
,
2011
, “
Adding Kinematic Constraints to Purely Differential Dynamics
,”
Comput. Mech.
,
47
(
2
), pp.
187
203
.
25.
Braun
,
D. J.
, and
Goldfarb
,
M.
,
2009
, “
Eliminating Constraint Drift in the Numerical Simulation of Constrained Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
37–40
), pp.
3151
3160
.
26.
Borri
,
M.
,
Trainelli
,
L.
, and
Croce
,
A.
,
2006
, “
The Embedded Projection Method: A General Index Reduction Procedure for Constrained System Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
50–51
), pp.
6974
6992
.
27.
Arnold
,
M.
,
2009
, “
Numerical Methods for Simulation in Applied Dynamics
,”
In Simulation Techniques for Applied Dynamics
,
M.
Arnold
and
W.
Schiehlen
, eds.,
Springer
,
Vienna
.
28.
Bauchau
,
O. A.
, and
Laulusa
,
A.
,
2008
, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011005
.
29.
Laulusa
,
A.
, and
Bauchau
,
O. A.
,
2008
, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011004
.
30.
Schiehlen
,
W.
,
1991
, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
,
1
, pp.
149
188
.
31.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
,
Springer
,
Dordrecht
.
32.
Hairer
,
E.
,
Lubich
,
Ch.
, and
Roche
,
M.
,
1989
, “
The Numerical Solution of Differential-Algebraic Equations by Runge–Kutta Methods
,”
Lecture Notes in Mathematics
, Vol.
1409
,
Springer
.
33.
Kunkel
,
P.
, and
Mehrmann
,
V.
,
2006
,
Differential-Algebraic Equations: Analysis and Numerical Solution
,
European Mathematical Society
,
Zürich
.
34.
Betsch
,
P.
, and
Steinmann
,
P.
,
2002
, “
A DAE Approach to Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
,
8
, pp.
367
391
.
35.
Negrut
,
D.
,
Jay
,
L. O.
,
Khude
,
N.
, and
Heyn
,
T.
,
2007
, “
A Discussion of Low Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics
,”
Proceedings of Multibody Dynamics, ECCOMAS Thematic Conference
,
C. L.
Bottasso
,
P.
Masarati
, and
L.
Trainelli
, eds.,
Milano, Italy
, June 25–28.
36.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
189
222
.
37.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
New York
.
38.
Shabana
,
A. A.
,
Hwang
,
Y. L.
, and
Wehage
,
R. A.
,
1992
, “
Projection Methods in Flexible Multibody Dynamics. Part I: Kinematics
,”
Int. J. Numer. Methods Eng.
,
35
(
10
), pp.
1927
1939
.
39.
Simeon
,
B.
,
1998
, “
Order Reduction of Stiff Solvers at Elastic Multibody Systems
,”
Appl. Numer. Math.
,
28
(
2–4
), pp.
459
475
.
40.
Simeon
,
B.
,
2001
, “
Numerical Analysis of Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
6
(
4
), pp.
305
325
.
41.
Sugiyama
,
H.
,
Escalona
,
J. L.
, and
Shabana
,
A. A.
,
2003
, “
Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates
,”
Nonlinear Dyn.
,
31
(
2
), pp.
167
195
.
42.
Wehage
,
R. A.
,
Shabana
,
A. A.
, and
Hwang
,
Y. L.
,
1992
, “
Projection Methods in Flexible Multibody Dynamics. Part II: Dynamics and Recursive Projection Methods
,”
Int. J. Numer. Methods Eng.
,
35
(
10
), pp.
1941
1966
.
43.
Yen
,
J.
, and
Petzold
,
L. R.
,
1998
, “
A Time Integration Algorithm for Flexible Mechanism Dynamics: The DAE α-Method
,”
Comput. Methods Appl. Mech. Eng.
,
158
(
3–4
), pp.
341
355
.
44.
Bastos
,
G.
,
Seifried
,
R.
, and
Brüls
,
O.
,
2013
, “
Inverse Dynamics of Serial and Parallel Underactuated Multibody Systems Using a DAE Optimal Control Approach
,”
Multibody Syst. Dyn.
,
30
(
3
), pp.
359
376
.
45.
Brüls
,
O.
,
Bastos
,
G.
, Jr.
, and
Seifried
,
R.
,
2014
, “
A Stable Inversion Method for Feedforward Control of Constrained Flexible Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011014
.
46.
Fumagalli
,
A.
,
Masarati
,
P.
,
Morandini
,
M.
, and
Mantegazza
,
P.
,
2009
, “
Control Constraint Realization for Multibody Systems
,”
ASME
Paper No. DETC2009-86949.
47.
Masarati
,
P.
,
2014
, “
Computed Torque Control of Redundant Manipulators Using General-Purpose Software in Real-Time
,”
Multibody Syst. Dyn.
,
32
(
4
), pp.
403
428
.
48.
Masarati
,
P.
,
Morandini
,
M.
, and
Fumagalli
,
A.
,
2014
, “
Control Constraint of Underactuated Aerospace Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021014
.
49.
Masarati
,
P.
,
Morandini
,
M.
, and
Fumagalli
,
A.
,
2011
, “
Control Constraint Realization Applied to Underactuated Aerospace Systems
,”
ASME
Paper No. DETC2011-47276.
50.
Seifried
,
R.
, and
Blajer
,
W.
,
2013
, “
Analysis of Servo-Constraint Problems for Underactuated Multibody Systems
,”
Mech. Sci.
,
4
, pp.
113
129
.
51.
Gu
,
B.
, and
Asada
,
H. H.
,
2004
,“
Co-Simulation of Algebraically Coupled Dynamic Subsystems Without Disclosure of Proprietary Subsystem Models
,”
ASME J. Dyn. Syst., Meas. Control
,
126
(
1
), pp.
1
13
.
52.
Kübler
,
R.
, and
Schiehlen
,
W.
,
2000
, “
Two Methods of Simulator Coupling
,”
Math. Comput. Modell. Dyn. Syst.
,
6
(
2
), pp.
93
113
.
53.
Schweizer
,
B.
, and
Lu
,
D.
,
2014
, “
Predictor/Corrector Co-Simulation Approaches for Solver Coupling With Algebraic Constraints
,”
ZAMM—J. Appl. Math. Mech.
(online).
54.
Schweizer
,
B.
, and
Lu
,
D.
,
2014
, “
Stabilized Index-2 Co-Simulation Approach for Solver Coupling With Algebraic Constraints
,”
Multibody Syst. Dyn.
34
, pp. 129–161.
55.
Schweizer
,
B.
,
Li
,
P.
, and
Lu
,
D.
,
2015
, “
Implicit Co-Simulation Methods: Stability and Convergence Analysis for Solver Coupling With Algebraic Constraints
,”
ZAMM—J. Appl. Math. Mech.
(online).
56.
Schweizer
,
B.
,
Lu
,
D.
, and
Li
,
P.
,
2015
, “
Co-Simulation Method for Solver Coupling With Algebraic Constraints Incorporating Relaxation Techniques
,”
Multibody Syst. Dyn.
(online).
57.
Schweizer
,
B.
,
Li
,
P.
,
Lu
,
D.
, and
Meyer
,
T.
,
2015
, “
Stabilized Implicit Co-Simulation Method: Solver Coupling With Algebraic Constraints for Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
(accepted).
58.
Wang
,
J.
,
Ma
,
Z. D.
, and
Hulbert
,
G.
,
2003
, “
A Gluing Algorithm for Distributed Simulation of Multibody Systems
,”
Nonlinear Dyn.
,
34
(
1–2
), pp.
159
188
.
59.
Masarati
,
P.
,
2009
, “
Direct Eigenanalysis of Constrained System Dynamics
,”
Proc. Inst. Mech. Eng. Part K
,
223
(
4
), pp.
335
342
.
60.
Sohoni
,
V. N.
, and
Whitesell
,
J.
,
1986
, “
Automatic Linearization of Constraint Dynamical Models
,”
ASME J. Mech. Des.
,
108
(
3
), pp.
300
304
.
61.
Brüls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
, pp.
121
137
.
62.
Brüls
,
O.
, and
Arnold
,
M.
,
2008
, “
The Generalized-α Scheme as a Linear Multi-Step Integrator: Towards a General Mechatronic Simulator
,”
ASME J. Comput. Nonlinear Dyn.
,
3
, pp.
41
57
.
63.
Cardona
,
A.
, and
Geradin
,
M.
,
1998
, “
Time Integration of the Equations of Motion in Mechanism Analysis
,”
Comput. Struct.
,
33
, pp.
801
820
.
64.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.
65.
Negrut
,
D.
,
Rampalli
,
R.
, and
Ottarsson
,
G.
,
2007
, “
On an Implementation of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
73
85
.
66.
Betsch
,
P.
,
2005
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part I—Holonomic Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
50–52
), pp.
5159
5190
.
67.
Betsch
,
P.
, and
Leyendecker
,
S.
,
2006
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part II—Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
67
(
4
), pp.
499
552
.
68.
Betsch
,
P.
,
Hesch
,
C.
,
Sänger
,
N.
, and
Uhlar
,
S.
,
2010
, “
Variational Integrators and Energy-Momentum Schemes for Flexible Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
), p.
031001
.
69.
Betsch
,
P.
, and
Uhlar
,
S.
,
2007
, “
Energy-Momentum Conserving Integration of Multibody Dynamics
,”
Multibody Syst. Dyn.
,
17
(
4
), pp.
243
289
.
70.
Leyendecker
,
S.
,
Betsch
,
P.
, and
Steinmann
,
P.
,
2008
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part III—Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
,
19
(
1–2
), pp.
45
72
.
71.
Leyendecker
,
S.
,
Betsch
,
P.
, and
Steinmann
,
P.
,
2006
, “
Objective Energy-Momentum Conserving Integration for the Constrained Dynamics of Geometrically Exact Beams
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
19–22
), pp.
2313
2333
.
72.
Leyendecker
,
S.
,
Betsch
,
P.
, and
Steinmann
,
P.
,
2004
, “
Energy-Conserving Integration of Constrained Hamiltonian Systems—A Comparison of Approaches
,”
Comput. Mech.
,
33
(
3
), pp.
174
185
.
73.
Lubich
,
C.
,
1993
, “
Integration of Stiff Mechanical Systems by Runge–Kutta Methods
,”
ZAMP
,
44
(
6
), pp.
1022
1053
.
74.
Petzold
,
L. R.
,
1986
, “
Order Results for Implicit Runge–Kutta Methods Applied to Differential Algebraic Systems
,”
SIAM J. Numer. Anal.
,
23
(
4
), pp.
837
852
.
75.
Schaub
,
M.
, and
Simeon
,
B.
,
2003
, “
Blended Lobatto Methods in Multibody Dynamics
,”
ZAMM J. Appl. Math. Mech.
,
83
(
10
), pp.
720
728
.
76.
Negrut
,
D.
,
Haug
,
E. J.
, and
German
,
H. C.
,
2003
, “
An Implicit Runge–Kutta Method for Integration of Differential Algebraic Equations of Multibody Dynamics
,”
Multibody Syst. Dyn.
,
9
(
2
), pp.
121
142
.
77.
Negrut
,
D.
,
1998
, “
On the Implicit Integration of Differential-Algebraic Equations of Multibody Dynamics
,” Ph.D. thesis, The University of Iowa, Iowa city, IA.
78.
Meijaard
,
J.
,
2003
, “
Application of Runge–Kutta–Rosenbrock Methods to the Analysis of Flexible Multibody Systems
,”
Multibody Syst. Dyn. J.
,
10
(
3
), pp.
263
288
.
79.
Orzechowski
,
G.
, and
Fraczek
,
J.
,
2012
, “
Integration of the Equations of Motion of Multibody Systems Using Absolute Nodal Coordinate Formulation
,”
Acta Mech. Et Autom.
,
6
(
2
), pp.
75
83
.
80.
Bauchau
,
O. A.
,
2003
, “
A Self-Stabilized Algorithm for Enforcing Constraints in Multibody Systems
,”
Int. J. Solids Struct.
,
40
(
13–14
), pp.
3253
3271
.
81.
Haug
,
E. J.
,
1989
,
Computer-Aided Kinematics and Dynamics of Mechanical Systems
,
Allyn and Bacon
,
Boston
.
82.
Gear
,
C. W.
,
1988
, “
Differential-Algebraic Index Transformations
,”
SIAM J. Sci. Stat. Comput.
,
9
(
1
), pp.
39
47
.
You do not currently have access to this content.