This paper considers the problem of finite-time output tracking for a class of nonautonomous nonlinear fractional-order (FO) systems in the presence of model uncertainties and external disturbances. The finite-time control methods indicate better properties in terms of robustness, disturbance rejection, and settling time. Thus, design of a robust nonsingular controller for finite-time output tracking of a time-varying reference signal is considered in this paper, and a novel FO nonsingular terminal sliding mode controller (TSMC) is designed, which can conquer the uncertainties and guarantees the finite-time convergence of the system output toward the desired time-varying reference signal. For this purpose, an appropriate nonsingular terminal sliding manifold is designed, where maintaining the system's states on this manifold leads to finite-time vanishing of error signal (i.e., ensures the finite-time occurrence of both reaching and sliding phases). Moreover, by tacking the fractional derivative of the sliding manifold, the convergence of system's trajectories into the terminal sliding manifold in a finite time is proven, and the convergence time is estimated. Finally, in order to verify the theoretical results, the proposed method is applied to an FO model of a horizontal platform system (FO-HPS), and the computer simulations show the efficiency of the proposed method in finite-time output tracking.

References

References
1.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
1998
, “
Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators
,”
IEEE Trans. Autom. Control
,
43
(
5
), pp.
678
682
.
2.
Hong
,
Y.
,
Wang
,
J.
, and
Xi
,
Z.
,
2005
, “
Stabilization of Uncertain Chained Form Systems Within Finite Settling Time
,”
IEEE Trans. Autom. Control
,
50
(
9
), pp.
1379
1384
.
3.
Polyakov
,
A.
,
Efimov
,
D.
, and
Perruquetti
,
W.
,
2013
, “
Finite-Time Stabilization Using Implicit Lyapunov Function Technique
,”
9th Symposium on Nonlinear Control Systems
, Toulouse, France.
4.
Dorato
,
P.
,
2006
, “
An Overview of Finite-Time Stability
,”
Current Trends in Nonlinear Systems and Control: In Honor of Petar Kokotovic and Turi Nicosia
, Birkhäuser, Boston, MA.
5.
LaValle
,
S. M.
,
2006
,
System Theory and Analytical Techniques
,
Cambridge University Press
,
Cambridge, UK
.
6.
Zhang
,
X. F.
,
Feng
,
G.
, and
Sun
,
Y. H.
,
2012
, “
Finite-Time Stabilization by State Feedback Control for a Class of Time-Varying Nonlinear Systems
,”
Automatica
,
48
(
3
), pp.
499
504
.
7.
Khoo
,
S.
,
Yin
,
J. L.
,
Man
,
Z. H.
, and
Yu
,
X. H.
,
2013
, “
Finite-Time Stabilization of Stochastic Nonlinear Systems in Strict-Feedback Form
,”
Automatica
,
49
(
5
), pp.
1403
1410
.
8.
Binazadeh
,
T.
, and
Shafiei
,
M. H.
,
2014
, “
A Novel Approach in the Finite-Time Controller Design
,”
Syst. Sci. Control Eng.
,
2
(
1
), pp.
119
124
.
9.
Binazadeh
,
T.
, and
Shafiei
,
M. H.
,
2014
, “
Nonsingular Terminal Sliding-Mode Control of a Tractor–Trailer System
,”
Syst. Sci. Control Eng.
,
2
(
1
), pp.
168
174
.
10.
Gao
,
F.
, and
Yuan
,
F.
,
2014
, “
Adaptive Finite-Time Stabilization for a Class of Uncertain High Order Nonholonomic Systems
,”
ISA Trans.
,
54
, pp.
75
82
.
11.
Zha
,
W.
,
Zhai
,
J.
, and
Fei
,
S.
,
2015
, “
Global Adaptive Finite-Time Control for Stochastic Nonlinear Systems Via State Feedback
,”
Circuits Syst. Signal Process.,
34
(
12
), pp.
3789
3809
.
12.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
13.
Magin
,
R. L.
,
2006
,
Fractional Calculus in Bioengineering
,
Begell House Redding
,
Danbury, CT
.
14.
Atanackovic
,
T.
,
Pilipovic
,
S.
, and
Zorica
,
D.
,
2007
, “
A Diffusion Wave Equation With Two Fractional Derivatives of Different Order
,”
J. Phys. A: Math. Theor.
,
40
(
20
), pp.
5319
5334
.
15.
Scalas
,
E.
,
2008
, “
On the Application of Fractional Calculus in Finance and Economics, Plenary Lecture Paper
,”
3rd IFAC Workshop on Fractional Differentiation and its Applications
, Ankara, Turkey.
16.
Agrawal
,
O. P.
,
2002
, “
Formulation of Euler–Lagrange Equations for Fractional Variational Problems
,”
J. Math. Anal. Appl.
,
272
(
1
), pp.
368
379
.
17.
Mujumdar
,
A.
,
Tamhane
,
B.
, and
Kurode
,
S.
,
2014
, “
Fractional Order Modeling and Control of a Flexible Manipulator Using Sliding Modes
,”
American Control Conference
(
ACC
), Portland, OR, June 4–6, pp. 2011–2016.
18.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol.
,
30
(
1
), pp.
133
155
.
19.
Kamal
,
S.
,
Raman
,
A.
, and
Bandyopadhyay
,
B.
,
2013
, “
Finite-Time Stabilization of Fractional Order Uncertain Chain of Integrator: An Integral Sliding Mode Approach
,”
IEEE Trans. Autom. Control
,
58
(
6
), pp.
1597
1602
.
20.
Xin
,
B.
, and
Zhang
,
J.
,
2015
, “
Finite-Time Stabilizing a Fractional-Order Chaotic Financial System With Market Confidence
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1399
1409
.
21.
Binazadeh
,
T.
, and
Shafiei
,
M. H.
,
2013
, “
Output Tracking of Uncertain Fractional-Order Nonlinear Systems Via a Novel Fractional-Order Sliding Mode Approach
,”
Mechatronics
,
23
(
7
), pp.
888
892
.
22.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Application of Fractional Differential Equations
,
North Holland Mathematics Studies, Elsevier
,
Amsterdam
,
The Netherlands
.
23.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2010
, “
Stability of Fractional Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag-Leffler Stability
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1810
1821
.
24.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
3rd ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
25.
Valerio
,
D.
,
2005
, “
Toolbox Ninteger for matlab, V. 2.3
.”
26.
Aghababa
,
M. P.
,
2014
, “
Chaotic Behavior in Fractional-Order Horizontal Platform Systems and Its Suppression Using a Fractional Finite-Time Control Strategy
,”
J. Mech. Sci. Technol.
,
28
(
5
), pp.
1875
1880
.
You do not currently have access to this content.