Bacteriophage T4 is one of the most common and complex of the tailed viruses that infect host bacteria using an intriguing contractile tail assembly. Despite extensive progress in resolving the structure of T4, the dynamics of the injection machinery remains largely unknown. This paper contributes a first model of the injection machinery that is driven by elastic energy stored in a structure known as the sheath. The sheath is composed of helical strands of protein that suddenly collapse from an energetic, extended conformation prior to infection to a relaxed, contracted conformation during infection. We employ Kirchhoff rod theory to simulate the nonlinear dynamics of a single protein strand coupled to a model for the remainder of the virus, including the coupled translation and rotation of the head (capsid), neck, and tail tube. Doing so provides an important building block toward the future goal of modeling the entire sheath structure which is composed of six interacting helical protein strands. The resulting numerical model exposes fundamental features of the injection machinery including the time scale and energetics of the infection process, the nonlinear conformational change experienced by the sheath, and the contribution of hydrodynamic drag on the head (capsid).

References

References
1.
Matsuzaki
,
S.
,
Rashel
,
M.
,
Uchiyama
,
J.
,
Sakurai
,
S.
,
Ujihara
,
T.
,
Kuroda
,
M.
,
Ikeuchi
,
M.
,
Tani
,
T.
,
Fujieda
,
M.
,
Wakiguchi
,
H.
, and
Imai
,
S.
,
2005
, “
Bacteriophage Therapy: A Revitalized Therapy Against Bacterial Infectious Diseases
,”
J. Infect. Chemother.
,
11
(
5
), pp.
211
219
.
2.
Ackermann
,
H. W.
,
2003
, “
Bacteriophage Observations and Evolution
,”
Res. Microbiol.
,
154
(
4
), pp.
245
251
.
3.
Leiman
,
P. G.
,
Kanamaru
,
S.
,
Mesyanzhinov
,
V. V.
,
Arisaka
,
F.
, and
Rossmann
,
M. G.
,
2003
, “
Structure and Morphogenesis of Bacteriophage T4
,”
Cell. Mol. Life Sci.
,
60
(
11
), pp.
2356
2370
.
4.
Mesyanzhinov
,
V. V.
,
Leiman
,
P. G.
,
Kostyuchenko
,
V. A.
,
Kurochkina
,
L. P.
,
Miroshnikov
,
K. A.
,
Sykilinda
,
N. N.
, and
Shneider
,
M. M.
,
2004
, “
Molecular Architecture of Bacteriophage T4
,”
Biochemistry
,
69
(
11
), pp.
1190
1202
.
5.
Mathews
,
C. K.
,
1983
, “
Bacteriophage T4
,”
American Society for Microbiology
,
Washington, DC
.
6.
Rossmann
,
M. G.
,
Mesyanzhinov
,
V. V.
,
Arisaka
,
F.
, and
Leiman
,
P. G.
,
2004
, “
The Bacteriophage T4 DNA Injection Machine
,”
Curr. Opin. Struct. Biol.
,
14
(
2
), pp.
171
180
.
7.
Crowther
,
R. A.
,
Lenk
,
E. V.
,
Kikuchi
,
Y.
, and
King
,
J.
,
1977
, “
Molecular Reorganization in the Hexagon to Star Transition of the Baseplate of Bacteriophage T4
,”
J. Mol. Biol.
,
116
(
3
), pp.
489
523
.
8.
Hagens
,
S.
, and
Loessner
,
M. J.
,
2007
, “
Application of Bacteriophages for Detection and Control of Foodborne Pathogens
,”
Appl. Microbiol. Biotechnol.
,
76
(
3
), pp.
513
519
.
9.
Petrenko
,
V. A.
, and
Vodyanoy
,
V. J.
,
2003
, “
Phage Display for Detection of Biological Threat Agents
,”
J. Microbiol. Methods
,
53
(
2
), pp.
253
262
.
10.
Azzazy
,
H. M. E.
, and
Highsmith
,
W. E.
,
2002
, “
Phage Display Technology: Clinical Applications and Recent Innovations
,”
Clin. Biochem.
,
35
(
6
), pp.
425
445
.
11.
Parisien
,
A.
,
Allain
,
B.
,
Zhang
,
J.
,
Mandeville
,
R.
, and
Lan
,
C. Q.
,
2008
, “
Novel Alternatives to Antibiotics: Bacteriophages, Bacterial Cell Wall Hydrolases, and Antimicrobial Peptides
,”
J. Appl. Microbiol.
,
104
(
1
), pp.
1
13
.
12.
Brüssow
,
H.
,
2005
, “
Phage Therapy: The Escherichia Coli Experience
,”
Microbiology
,
151
(
7
), pp.
2133
2140
.
13.
Inal
,
J. M.
,
2003
, “
Phage Therapy: A Reappraisal of Bacteriophages as Antibiotics
,”
Arch. Immunol. Ther. Exp.
,
51
(
4
), pp.
237
244
.
14.
Kanamaru
,
S.
,
Leiman
,
P. G.
,
Kostyuchenko
,
V. A.
,
Chipman
,
P. R.
,
Mesyanzhinov
,
V. V.
,
Arisaka
,
F.
, and
Rossmann
,
M. G.
,
2002
, “
Structure of the Cell-Puncturing Device of Bacteriophage T4
,”
Nature
,
415
(
6871
), pp.
553
557
.
15.
Li
,
Q.
,
Shivachandra
,
S. B.
,
Leppla
,
S. H.
, and
Rao
,
V. B.
,
2006
, “
Bacteriophage T4 Capsid: A Unique Platform for Efficient Surface Assembly of Macromolecular Complexes
,”
J. Mol. Biol.
,
363
(
2
), pp.
577
588
.
16.
Aksyuk
,
A. A.
,
Leiman
,
P. G.
,
Kurochkina
,
L. P.
,
Shneider
,
M. M.
,
Kostyuchenko
,
V. A.
,
Mesyanzhinov
,
V. V.
, and
Rossmann
,
M. G.
,
2009
, “
The Tail Sheath Structure of Bacteriophage T4: A Molecular Machine for Infecting Bacteria
,”
EMBO J.
,
28
(
7
), pp.
821
829
.
17.
Kostyuchenko
,
V. A.
,
Chipman
,
P. R.
,
Leiman
,
P. G.
,
Arisaka
,
F.
,
Mesyanzhinov
,
V. V.
, and
Rossmann
,
M. G.
,
2005
, “
The Tail Structure of Bacteriophage T4 and Its Mechanism of Contraction
,”
Nat. Struct. Mol. Biol.
,
12
(
9
), pp.
810
813
.
18.
Klapper
,
I.
,
1996
, “
Biological Applications of the Dynamics of Twisted Elastic Rods
,”
J. Comput. Phys.
,
125
(
2
), pp.
325
337
.
19.
Olson
,
W. K.
,
1996
, “
Simulating DNA at Low Resolution
,”
Curr. Opin. Struct. Biol.
,
6
(
2
), pp.
242
256
.
20.
Balaeff
,
A.
,
Koudella
,
C. R.
,
Mahadevan
,
L.
, and
Schulten
,
K.
,
2004
, “
Modelling DNA Loops Using Continuum and Statistical Mechanics
,”
Philos. Trans. R. Soc. A
,
362
(
1820
), pp.
1355
1371
.
21.
Goyal
,
S.
,
Perkins
,
N. C.
, and
Lee
,
C. L.
,
2005
, “
Nonlinear Dynamics and Loop Formation in Kirchhoff Rods With Implications to the Mechanics of DNA and Cables
,”
J. Comput. Phys.
,
209
(
1
), pp.
371
389
.
22.
Tobias
,
I.
,
Swigon
,
D.
, and
Coleman
,
B. D.
,
2000
, “
Elastic Stability of DNA Configurations—I: General Theory
,”
Phys. Rev. E
,
61
(
1
), pp.
747
758
.
23.
Hirsh
,
A. D.
,
Lillian
,
T. D.
,
Lionberger
,
T. A.
,
Taranova
,
M.
,
Andricioaei
,
I.
, and
Perkins
,
N. C.
,
2013
, “
A Model for Highly Strained DNA Compressed Inside a Protein Cavity
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031001
.
24.
Đuričković
,
B.
,
Goriely
,
A.
, and
Maddocks
,
J. H.
,
2013
, “
Twist and Stretch of Helices Explained Via the Kirchhoff–Love Rod Model of Elastic Filaments
,”
Phys. Rev. Lett.
,
111
(
10
), p.
108103
.
25.
Love
,
A. E. H.
,
2013
,
A Treatise on the Mathematical Theory of Elasticity
,
Cambridge University Press
,
Cambridge, UK
.
26.
Fokine
,
A.
,
Chipman
,
P. R.
,
Leiman
,
P. G.
,
Mesyanzhinov
,
V. V.
,
Rao
,
V. B.
, and
Rossmann
,
M. G.
,
2004
, “
Molecular Architecture of the Prolate Head of Bacteriophage T4
,”
Proc. Natl. Acad. Sci. U.S.A.
,
101
(
16
), pp.
6003
6008
.
27.
Baschong
,
W.
,
Baschong-Prescianotto
,
C.
,
Engel
,
A.
,
Kellenberger
,
E.
,
Lustig
,
A.
,
Reichelt
,
R.
,
Zulauf
,
M.
, and
Aebi
,
U.
,
1991
, “
Mass Analysis of Bacteriophage T4 Proheads and Mature Heads by Scanning Transmission Electron Microscopy and Hydrodynamic Measurements
,”
J. Struct. Biol.
,
106
(
2
), pp.
93
101
.
28.
Kostyuchenko
,
V. A.
,
Leiman
,
P. G.
,
Chipman
,
P. R.
,
Kanamaru
,
S.
,
van Raaij
,
M. J.
,
Arisaka
,
F.
,
Mesyanzhinov
,
V. V.
, and
Rossmann
,
M. G.
,
2003
, “
Three-Dimensional Structure of Bacteriophage T4 Baseplate
,”
Nat. Struct. Mol. Biol.
,
10
(
9
), pp.
688
693
.
29.
Leiman
,
P. G.
,
Chipman
,
P. R.
,
Kostyuchenko
,
V. A.
,
Mesyanzhinov
,
V. V.
and
Rossmann
,
M. G.
,
2004
, “
Three-Dimensional Rearrangement of Proteins in the Tail of Bacteriophage T4 on Infection of its Host
,”
Cell
,
118
(
4
), pp.
419
429
.
30.
Leiman
,
P. G.
,
Kostyuchenko
,
V. A.
,
Shneider
,
M. M.
,
Kurochkina
,
L. P.
,
Mesyanzhinov
,
V. V.
, and
Rossmann
,
M. G.
,
2000
, “
Structure of Bacteriophage T4 Gene Product 11, the Interface Between the Baseplate and Short Tail Fibers
,”
J. Mol. Biol.
,
301
(
4
), pp.
975
985
.
31.
Gatti-Bono
,
C.
, and
Perkins
,
N. C.
,
2002
, “
Physical and Numerical Modelling of the Dynamic Behavior of a Fly Line
,”
J. Sound Vib.
,
255
(
3
), pp.
555
577
.
32.
Gobat
,
J. I.
,
Grosenbaugh
,
M. A.
, and
Triantafyllou
,
M. S.
,
2002
, “
Generalized-α Time Integration Solutions for Hanging Chain Dynamics
,”
J. Eng. Mech.
,
128
(
6
), pp.
677
687
.
33.
Shigley
,
J. E.
,
2011
,
Shigley's Mechanical Engineering Design
,
McGraw-Hill
,
New York
.
34.
Howard
,
J.
,
2001
,
Mechanics of Motor Proteins and the Cytoskeleton
,
Sinauer Associates
,
Sunderland, MA
.
You do not currently have access to this content.