This paper presents an adaptive robust controller for a class of uncertain chaotic Rossler system with time-varying mismatched parameters. The proposed controller is designed based on Lyapunov stability theory, and it is shown that using this controller all signals of the closed-loop system are uniformly ultimately bounded (UUB). In addition, the proposed scheme is such that it does not require a priori information about the bound of uncertainties. Furthermore, since all the signals are UUB, the control signal is smooth and feasible to implement. Simulation results on a third-order Rossler system with time-varying parameters confirm the effectiveness of the proposed controller.

References

References
1.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
1196
1199
.
2.
Wang
,
X.
, and
Wang
,
M.
,
2008
, “
A Hyperchaos Generated From Lorenz System
,”
Physica A
,
387
(
14
), pp.
3751
3758
.
3.
Dou
,
F. Q.
,
Sun
,
J. A.
,
Duan
,
W. S.
, and
,
K. P.
,
2009
, “
Controlling Hyperchaos in the New Hyperchaotic System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
2
), pp.
552
559
.
4.
Arefi
,
M.
, and
Jahed-Motlagh
,
M.
,
2012
, “
Robust Synchronization of Rossler Systems With Mismatched Time-Varying Parameters
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1233
1245
.
5.
Hai
,
M. J.
, and
Ling
,
M. L.
,
2008
, “
Improved Piece-Wise Linear and Nonlinear Synchronization of a Class of Discrete Chaotic Systems
,”
Int. J. Comput. Math.
,
87
(
3
), pp.
619
628
.
6.
Park
,
J. H.
, and
Kwon
,
O. M.
,
2005
, “
A Novel Criterion for Delayed Feedback Control of Time-Delay Chaotic Systems
,”
Chaos, Solitons Fractals
,
23
(
2
), pp.
495
501
.
7.
Zhang
,
H.
,
Ma
,
X.-K.
,
Li
,
M.
, and
Zou
,
J.-L.
,
2005
, “
Controlling and Tracking Hyperchaotic Rössler System Via Active Backstepping Design
,”
Chaos, Solitons Fractals
,
26
(
2
), pp.
353
361
.
8.
Yu-Ping
,
T.
, and
Yu
,
X.
,
2000
, “
Adaptive Control of Chaotic Dynamical Systems Using Invariant Manifold Approach
,”
IEEE Trans. Circuits Syst. I
,
47
(
10
), pp.
1537
1542
.
9.
Ansari
,
S. P.
, and
Das
,
S.
,
2014
, “
Projective Synchronization of Time-Delayed Chaotic Systems With Unknown Parameters Using Adaptive Control Method
,”
Math. Methods Appl. Sci.
,
38
(
4
), pp.
726
737
.
10.
Arefi
,
M. M.
, and
Jahed-Motlagh
,
M. R.
,
2010
, “
Adaptive Robust Synchronization of Rossler Systems in the Presence of Unknown Matched Time-Varying Parameters
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
12
), pp.
4149
4157
.
11.
Arefi
,
M. M.
, and
Jahed-Motlagh
,
M. R.
,
2009
, “
Adaptive Robust Control of Hyperchaotic Rossler System in the Presence of Matching Disturbance
,”
Second IFAC Meeting Related to Analysis and Control of Chaotic Systems
, Queen Mary University, London.
12.
Osipov
,
G.
,
Glatz
,
L.
, and
Troger
,
H.
,
1998
, “
Suppressing Chaos in the Duffing Oscillator by Impulsive Actions
,”
Chaos, Solitons Fractals
,
9
(
1–2
), pp.
307
321
.
13.
Jang
,
M.-J.
,
Chen
,
C.-L.
, and
Chen
,
C.-K.
,
2002
, “
Sliding Mode Control of Hyperchaos in Rössler Systems
,”
Chaos, Solitons Fractals
,
14
(
9
), pp.
1465
1476
.
14.
Yau
,
H.-T.
, and
Yan
,
J.-J.
,
2007
, “
Robust Controlling Hyperchaos of the Rössler System Subject to Input Nonlinearities by Using Sliding Mode Control
,”
Chaos, Solitons Fractals
,
33
(
5
), pp.
1767
1776
.
15.
Zhang
,
Q.
,
2014
, “
Robust Synchronization of FitzHugh–Nagumo Network With Parameter Disturbances by Sliding Mode Control
,”
Chaos, Solitons Fractals
,
58
, pp.
22
26
.
16.
Yan
,
J.-J.
,
2004
, “
H∞ Controlling Hyperchaos of the Rössler System With Input Nonlinearity
,”
Chaos, Solitons Fractals
,
21
(
2
), pp.
283
293
.
17.
Zhao
,
M.
, and
Wang
,
J.
,
2014
, “
Control of a Chaotic Finance System in the Presence of External Disturbance and Input Time-Delay
,”
Appl. Math. Comput.
,
233
, pp.
320
327
.
18.
Femat
,
R.
,
2002
, “
An Extension to Chaos Control Via Lie Derivatives: Fully Linearizable Systems
,”
Chaos
,
12
(
4
), pp.
1027
1033
.
19.
Lin
,
D.
, and
Wang
,
X.
,
2011
, “
Self-Organizing Adaptive Fuzzy Neural Control for the Synchronization of Uncertain Chaotic Systems With Random-Varying Parameters
,”
Neurocomputing
,
74
(
12–13
), pp.
2241
2249
.
20.
Lin
,
D.
, and
Wang
,
X.
,
2010
, “
Observer-Based Decentralized Fuzzy Neural Sliding Mode Control for Interconnected Unknown Chaotic Systems Via Network Structure Adaptation
,”
Fuzzy Sets Syst.
,
161
(
15
), pp.
2066
2080
.
21.
Lin
,
D.
,
Wang
,
X.
,
Nian
,
F.
, and
Zhang
,
Y.
,
2010
, “
Dynamic Fuzzy Neural Networks Modeling and Adaptive Backstepping Tracking Control of Uncertain Chaotic Systems
,”
Neurocomputing
,
73
(
16–18
), pp.
2873
2881
.
22.
Lazzouni
,
S. A.
,
Bowong
,
S.
,
Kakmeni
,
F. M. M.
,
Cherki
,
B.
, and
Ghouali
,
N.
,
2007
, “
Chaos Control Using Small-Amplitude Damping Signals of the Extended Duffing Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
5
), pp.
804
813
.
23.
Jin Yuan
,
H.
,
Chi Chuan
,
H.
,
An Pei
,
W.
, and
Li
,
W. J.
,
1999
, “
Controlling Hyperchaos of the Rossler System
,”
Int. J. Control
,
72
(
10
), pp.
882
886
.
24.
Li
,
Z.
,
Chen
,
G.
,
Shi
,
S.
, and
Han
,
C.
,
2003
, “
Robust Adaptive Tracking Control for a Class of Uncertain Chaotic Systems
,”
Phys. Lett. A
,
310
(
1
), pp.
40
43
.
25.
Estrada
,
J. L.
,
Duarte-Mermoud
,
M. A.
,
Travieso-Torres
,
J. C.
, and
Beltran
,
N. H.
,
2008
, “
Simplified Robust Adaptive Control of a Class of Time-Varying Chaotic Systems
,”
Int. J. Comput. Math. Electr. Electron. Eng.
,
27
(
2
), pp.
511
519
.
26.
Duarte-Mermoud
,
M. A.
,
Estrada
,
J. L.
, and
Travieso-Torres
,
J. C.
,
2009
, “
Adaptive Stabilization of Linear and Nonlinear Plants in the Presence of Large and Arbitrarily Fast Variations of the Parameters
,”
J. Franklin Inst.
,
346
(
8
), pp.
752
767
.
27.
Qu
,
Z.
,
1992
, “
Global Stabilization of Nonlinear Systems With a Class of Unmatched Uncertainties
,”
Syst. Control Lett.
,
18
(
4
), pp.
301
307
.
28.
Arefi
,
M.
, and
Jahed-Motlagh
,
M.
,
2012
, “
Adaptive Robust Stabilization of a Class of Uncertain Non-Linear Systems With Mismatched Time-Varying Parameters
,”
Proc. Inst. Mech. Eng., Part I
,
226
(
2
), pp.
204
214
.
29.
Marino
,
R.
, and
Tomei
,
P.
,
1995
,
Nonlinear Control Design: Geometric, Adaptive and Robust
,
Prentice Hall
,
London
.
30.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems
,
Springer Verlag
,
Berlin
.
31.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
Printice Hall
, Upper Saddle River, NJ.
You do not currently have access to this content.