Clearance is unavoidable in many engineering structures due to the manufacturing and installation errors. These clearances can cause intense impact and wear of the contacting pairs, which may change the dynamic response and eventually reduce the movement precision and the service life of the transmission system. Parameters identification of the clearance would provide better understanding of dynamic behaviors of the clearance and contribute significantly for the control of the induced disturbance and deviation. In this paper, based on dynamic characteristics of the clearance nonlinearity, the piecewise fitting method is first proposed to identify the clearance value of the continuum structure. During the proposed method, first, the rough scope of the clearance value extracted from the displacement response is divided into subintervals. And then, the nonlinear force is fitted by the piecewise linear function in the subintervals. Once the equivalent stiffness is obtained, the clearance value can be calculated by the sorting nonlinear force–displacement curve. The feasibility of the piecewise fitting method was verified by a cantilever beam system with clearances in simulation. Besides, some influence factors of this identification method, including the clearance value, exciting force level and measurement noise, are fully discussed to illustrate the robustness of this method. Moreover, an experiment system of a cantilever beam with adjustable clearances was designed to experimentally validate the effectiveness of the proposed method, and the results show that the piecewise fitting method can precisely identify the clearance value of continuous systems.

References

References
1.
Li
,
P.
,
Chen
,
W.
,
Li
,
D.
,
Yu
,
R.
, and
Zhang
,
W.
,
2015
, “
Wear Analysis of Two Revolute Joints With Clearance in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
1
), p.
011009
.
2.
Yao
,
X.
,
Guo
,
X.
,
Feng
,
Y.
,
Yu
,
C.
, and
Ma
,
C.
,
2015
, “
Dynamic Analysis for Planar Beam With Clearance Joint
,”
J. Sound Vib.
,
339
, pp.
324
341
.
3.
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Dynamic Response of Multibody Systems With Multiple Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031003
.
4.
Dupac
,
M.
, and
Beale
,
D. G.
,
2010
, “
Dynamic Analysis of a Flexible Linkage Mechanism With Cracks and Clearance
,”
Mech. Mach. Theory
,
45
(
12
), pp.
1909
1923
.
5.
Megahed
,
S. M.
, and
Haroun
,
A. F.
,
2011
, “
Analysis of the Dynamic Behavioral Performance of Mechanical Systems With Multi-Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011002
.
6.
Erkaya
,
S.
, and
Uzmay
,
İ.
,
2009
, “
Investigation on Effect of Joint Clearance on Dynamics of Four-Bar Mechanism
,”
Nonlinear Dyn.
,
58
(
1–2
), pp.
179
198
.
7.
He
,
S.
,
Jia
,
Q.
,
Chen
,
G.
, and
Sun
,
H.
,
2015
, “
Modeling and Dynamic Analysis of Planetary Gear Transmission Joints With Backlash
,”
Int. J. Control Autom.
,
8
(
2
), pp.
153
162
.
8.
Moradi
,
H.
, and
Salarieh
,
H.
,
2012
, “
Analysis of Nonlinear Oscillations in Spur Gear Pairs With Approximated Modelling of Backlash Nonlinearity
,”
Mech. Mach. Theory
,
51
, pp.
14
31
.
9.
Chebbi
,
A. H.
,
Affi
,
Z.
, and
Romdhane
,
L.
,
2009
, “
Prediction of the Pose Errors Produced by Joints Clearance for a 3-UPU Parallel Robot
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1768
1783
.
10.
Erkaya
,
S.
,
2012
, “
Investigation of Joint Clearance Effects on Welding Robot Manipulators
,”
Rob. Comput.-Integr. Manuf.
,
28
(
4
), pp.
449
457
.
11.
Zhao
,
Y.
, and
Bai
,
Z. F.
,
2011
, “
Dynamics Analysis of Space Robot Manipulator With Joint Clearance
,”
Acta Astronaut.
,
68
(7–8), pp.
1147
1155
.
12.
Li
,
B.
,
Quan
,
S.
,
Jin
,
W.
,
Han
,
L.
,
Liu
,
J.
, and
He
,
A.
,
2014
, “
Identification of Clearance and Contact Stiffness in a Simplified Barrel-Cradle Structure of Artillery System
,”
Adv. Mech. Eng.
,
7
, p.
745268
.
13.
Ibanez
,
P.
,
1973
, “
Identification of Dynamics Parameters of Linear and Non-Linear Structural Models From Experimental Data
,”
Nucl. Eng. Des.
,
25
(
1
), pp.
30
41
.
14.
Masri
,
S. F.
, and
Caughey
,
T. K.
,
1979
, “
A Nonparametric Identification Technique for Nonlinear Dynamic Problems
,”
ASME J. Appl. Mech.
,
46
(
2
), pp.
433
447
.
15.
Rice
,
H. J.
, and
Fitzpatrick
,
J. A.
,
1991
, “
A Procedure for the Identification of Linear and Non-Linear Multi-Degree-of-Freedom Systems
,”
J. Sound Vib.
,
149
(
3
), pp.
397
411
.
16.
Mohammad
,
K. S.
,
Worden
,
K.
, and
Tomlinson
,
G. R.
,
1992
, “
Direct Parameter Estimation for Linear and Non-Linear Structures
,”
J. Sound Vib.
,
152
(
3
), pp.
471
499
.
17.
Haroon
,
M.
,
Adams
,
D. E.
,
Luk
,
Y. W.
, and
Ferri
,
A. A.
,
2005
, “
A Time and Frequency Domain Approach for Identifying Nonlinear Mechanical System Models in the Absence of an Input Measurement
,”
J. Sound Vib.
,
283
(3–5), pp.
1137
1155
.
18.
Pilipchuk
,
V. N.
, and
Tan
,
C. A.
,
2005
, “
Non-Linear System Identification Based on Lie Series Solutions
,”
Mech. Syst. Signal Process.
,
19
(
1
), pp.
71
86
.
19.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A. F.
, and
Golinval
,
J. C.
,
2006
, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
20
(
3
), pp.
505
592
.
20.
Adams
,
D.
, and
Allemang
,
R.
,
2000
, “
A Frequency Domain Method for Estimating the Parameters of a Non-Linear Structural Dynamic Model Through Feedback
,”
Mech. Syst. Signal Process.
,
14
(
4
), pp.
637
656
.
21.
Overschee
,
P. V.
, and
Moor
,
B. D.
,
1996
,
Subspace Identification for Linear Systems: Theory-Implementation-Applications
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
22.
Marchesiello
,
S.
, and
Garibaldi
,
L.
,
2008
, “
A Time Domain Approach for Identifying Nonlinear Vibrating Structures by Subspace Methods
,”
Mech. Syst. Signal Process.
,
22
(
1
), pp.
81
101
.
23.
Marchesiello
,
S.
, and
Garibaldi
,
L.
,
2008
, “
Identification of Clearance-Type Nonlinearities
,”
Mech. Syst. Signal Process.
,
22
(
5
), pp.
1133
1145
.
24.
Noël
,
J. P.
,
Renson
,
L.
, and
Kerschen
,
G.
,
2014
, “
Complex Dynamics of a Nonlinear Aerospace Structure: Experimental Identification and Modal Interactions
,”
J. Sound Vib.
,
333
(
12
), pp.
2588
2607
.
25.
Li
,
B.
,
Han
,
L.
,
Jin
,
W.
, and
Quan
,
S.
,
2015
, “
Theoretical and Experimental Identification of Cantilever Beam With Clearances Using Statistical and Subspace-Based Methods
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031003
.
26.
Zhang
,
J.
, and
Du
,
X.
,
2015
, “
Time-Dependent Reliability Analysis for Function Generation Mechanisms With Random Joint Clearances
,”
Mech. Mach. Theory
,
92
, pp.
184
199
.
27.
Flores
,
P.
,
Leine
,
R.
, and
Glocker
,
C.
,
2009
, “
Modeling and Analysis of Planar Rigid Multibody Systems With Translational Clearance Joints Based on the Non-Smooth Dynamics Approach
,”
Multibody Syst. Dyn.
,
23
(
2
), pp.
165
190
.
28.
Koshy
,
C. S.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2013
, “
Study of the Effect of Contact Force Model on the Dynamic Response of Mechanical Systems With Dry Clearance Joints: Computational and Experimental Approaches
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
325
338
.
29.
Tian
,
Q.
,
Xiao
,
Q.
,
Sun
,
Y.
,
Hu
,
H.
,
Liu
,
H.
, and
Flores
,
P.
,
2015
, “
Coupling Dynamics of a Geared Multibody System Supported by ElastoHydroDynamic Lubricated Cylindrical Joints
,”
Multibody Syst. Dyn.
,
33
(
3
), pp.
259
284
.
30.
Zhang
,
Z.
,
Xu
,
L.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2014
, “
A Kriging Model for Dynamics of Mechanical Systems With Revolute Joint Clearances
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031013
.
31.
Flores
,
P.
,
2009
, “
Contact-Impact Analysis in Multibody Systems Based on the Nonsmooth Dynamics Approach
,” ETH-Zurich, Switzerland, Post Doctoral Report.
32.
Erkaya
,
S.
,
Doğan
,
S.
, and
Ulus
,
Ş.
,
2015
, “
Effects of Joint Clearance on the Dynamics of a Partly Compliant Mechanism: Numerical and Experimental Studies
,”
Mech. Mach. Theory
,
88
, pp.
125
140
.
33.
Alves
,
J.
,
Peixinho
,
N.
,
da Silva
,
M. T.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2015
, “
A Comparative Study of the Viscoelastic Constitutive Models for Frictionless Contact Interfaces in Solids
,”
Mech. Mach. Theory
,
85
, pp.
172
188
.
34.
Luo
,
L.
, and
Nahon
,
M.
,
2010
, “
Development and Validation of Geometry-Based Compliant Contact Models
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
1
), p.
011004
.
35.
Gilardi
,
G.
, and
Sharf
,
I.
,
2002
, “
Literature Survey of Contact Dynamics Modelling
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1213
1239
.
36.
Flores
,
P.
,
2010
, “
A Parametric Study on the Dynamic Response of Planar Multibody Systems With Multiple Clearance Joints
,”
Nonlinear Dyn.
,
61
(
4
), pp.
633
653
.
37.
Flores
,
P.
,
Ambrósio
,
J.
, and
Claro
,
J. P.
,
2004
, “
Dynamic Analysis for Planar Multibody Mechanical Systems With Lubricated Joints
,”
Multibody Syst. Dyn.
,
12
(
1
), pp.
47
74
.
You do not currently have access to this content.