Falling is the leading cause of both fatal and nonfatal injury in the elderly, often requiring expensive hospitalization and rehabilitation. We study the stability of human balance during stance using inverted single- and double-pendulum models, accounting for physiological reflex delays in the controller. The governing second-order neutral delay differential equation (NDDE) is transformed into an equivalent partial differential equation (PDE) constrained by a boundary condition and then into a system of ordinary differential equations (ODEs) using the Galerkin method. The stability of the ODE system approximates that of the original NDDE system; convergence is achieved by increasing the number of terms used in the Galerkin approximation. We validate our formulation by deriving analytical expressions for the stability margins of the double-pendulum human stance model. Numerical examples demonstrate that proportional–derivative–acceleration (PDA) feedback generally, but not always, results in larger stability margins than proportional–derivative (PD) feedback in the presence of reflex delays.

References

References
1.
Stevens
,
J. A.
, and
Sogolow
,
E. D.
,
2005
, “
Gender Differences for Non-Fatal Unintentional Fall Related Injuries Among Older Adults
,”
Inj. Prev.
,
11
(
2
), pp.
115
119
.
2.
Blake
,
A. J.
,
Morgan
,
K.
,
Bendall
,
M. J.
,
Dallosso
,
H.
,
Ebrahim
,
S. B. J.
,
Arie
,
T. H. D.
,
Fentem
,
P. H.
, and
Bassey
,
E. J.
,
1988
, “
Falls by Elderly People at Home: Prevalence and Associated Factors
,”
Age Ageing
,
17
(
6
), pp.
365
372
.
3.
Stevens
,
J. A.
,
Corso
,
P. S.
,
Finkelstein
,
E. A.
, and
Miller
,
T. R.
,
2006
, “
The Costs of Fatal and Non-Fatal Falls Among Older Adults
,”
Inj. Prev.
,
12
(
5
), pp.
290
295
.
4.
Milton
,
J.
,
Cabrera
,
J. L.
,
Ohira
,
T.
,
Tajima
,
S.
,
Tonosaki
,
Y.
,
Eurich
,
C. W.
, and
Campbell
,
S. A.
,
2009
, “
The Time-Delayed Inverted Pendulum: Implications for Human Balance Control
,”
Chaos
,
19
(
2
), p.
026110
.
5.
Atay
,
F. M.
,
1999
, “
Balancing the Inverted Pendulum Using Position Feedback
,”
Appl. Math. Lett.
,
12
(
5
), pp.
51
56
.
6.
Bottaro
,
A.
,
Yasutake
,
Y.
,
Nomura
,
T.
,
Casadio
,
M.
, and
Morasso
,
P.
,
2008
, “
Bounded Stability of the Quiet Standing Posture: An Intermittent Control Model
,”
Hum. Mov. Sci.
,
27
(
3
), pp.
473
495
.
7.
Mauritz
,
K. H.
,
Dietz
,
V.
, and
Haller
,
M.
,
1980
, “
Balancing as a Clinical Test in the Differential Diagnosis of Sensory-Motor Disorders
,”
J. Neurol. Neurosurg. Psychiatry
,
43
(
5
), pp.
407
412
.
8.
Stépán
,
G.
,
2009
, “
Delay Effects in the Human Sensory System During Balancing
,”
Philos. Trans. R. Soc. A
,
367
(
1891
), pp.
1195
1212
.
9.
Baratta
,
R.
, and
Solomonow
,
M.
,
1990
, “
The Dynamic Response Model of Nine Different Skeletal Muscles
,”
IEEE Trans. Biomed. Eng.
,
37
(
3
), pp.
243
251
.
10.
Proske
,
U.
, and
Gandevia
,
S. C.
,
2012
, “
The Proprioceptive Senses: Their Roles in Signaling Body Shape, Body Position and Movement, and Muscle Force
,”
Physiol. Rev.
,
92
(
4
), pp.
1651
1697
.
11.
Suzuki
,
Y.
,
Nomura
,
T.
, and
Morasso
,
P.
,
2011
, “
Stability of a Double Inverted Pendulum Model During Human Quiet Stance With Continuous Delay Feedback Control
,”
33rd Annual International Conference of the
IEEE
Engineering in Medicine and Biology Society, Boston, MA, Aug. 30–Sept. 3, pp.
7450
7453
.
12.
Insperger
,
T.
,
Milton
,
J.
, and
Stépán
,
G.
,
2013
, “
Acceleration Feedback Improves Balancing Against Reflex Delay
,”
J. R. Soc. Interface
,
10
(
79
), p.
20120763
.
13.
Laube
,
R.
,
Govender
,
S.
, and
Colebatch
,
J. G.
,
2012
, “
Vestibular-Dependent Spinal Reflexes Evoked by Brief Lateral Accelerations of the Heads of Standing Subjects
,”
J. Appl. Physiol.
,
112
(
11
), pp.
1906
1914
.
14.
Balachandran
,
B.
,
Kalmár-Nagy
,
T.
, and
Gilsinn
,
D. E.
,
2009
,
Delay Differential Equations: Recent Advances and New Directions
,
Springer
,
New York
.
15.
Vyasarayani
,
C. P.
,
2013
, “
Galerkin Approximations for Neutral Delay Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021014
.
16.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
,
2007
,
Table of Integrals, Series, and Products
,
7th ed.
Elsevier
,
Burlington, MA
.
17.
Vyasarayani
,
C. P.
,
Subhash
,
S.
, and
Kalmár-Nagy
,
T.
,
2014
, “
Spectral Approximations for Characteristic Roots of Delay Differential Equations
,”
Int. J. Dyn. Control
,
2
(
2
), pp.
126
132
.
18.
Asai
,
Y.
,
Tasaka
,
Y.
,
Nomura
,
K.
,
Nomura
,
T.
,
Casadio
,
M.
, and
Morasso
,
P.
,
2009
, “
A Model of Postural Control in Quiet Standing: Robust Compensation of Delay-Induced Instability Using Intermittent Activation of Feedback Control
,”
PLoS One
,
4
(
7
), p.
e6169
.
19.
Loram
,
I. D.
, and
Lakie
,
M.
,
2002
, “
Direct Measurement of Human Ankle Stiffness During Quiet Standing: The Intrinsic Mechanical Stiffness is Insufficient for Stability
,”
J. Physiol.
,
545
(
3
), pp.
1041
1053
.
20.
Colobert
,
B.
,
Crétual
,
A.
,
Allard
,
P.
, and
Delamarche
,
P.
,
2006
, “
Force-Plate Based Computation of Ankle and Hip Strategies From Double-Inverted Pendulum Model
,”
Clin. Biomech.
,
21
(
4
), pp.
427
434
.
21.
Milton
,
J.
,
Townsend
,
J. L.
,
King
,
M. A.
, and
Ohira
,
T.
,
2009
, “
Balancing With Positive Feedback: The Case for Discontinuous Control
,”
Philos. Trans. R. Soc. A
,
367
(
1891
), pp.
1181
1193
.
22.
John
,
C. T.
,
Anderson
,
F. C.
,
Higginson
,
J. S.
, and
Delp
,
S. L.
,
2013
, “
Stabilisation of Walking by Intrinsic Muscle Properties Revealed in a Three-Dimensional Muscle-Driven Simulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
4
), pp.
451
462
.
You do not currently have access to this content.