This paper aims at analyzing the coupled nonlinear dynamical behavior of geometrically imperfect shear deformable extensible microbeams based on the third-order shear deformation and modified couple stress theories. Using Hamilton's principle and taking into account extensibility, the three nonlinear coupled continuous expressions are obtained for an initially slightly curved (i.e., a geometrically imperfect) microbeam, describing the longitudinal, transverse, and rotational motions. A high-dimensional Galerkin scheme is employed, together with an assumed-mode technique, in order to truncate the continuous system with an infinite number of degrees of freedom into a discretized model with sufficient degrees of freedom. This high-dimensional discretized model is solved by means of the pseudo-arclength continuation technique for the system at the primary resonance, and also by direct time-integration to characterize the dynamic response at a fixed forcing amplitude and frequency; stability analysis is conducted via the Floquet theory. Apart from analyzing the nonlinear resonant response, the linear natural frequencies are obtained via an eigenvalue analysis. Results are shown through frequency–response curves, force–response curves, time traces, phase-plane portraits, and fast Fourier transforms (FFTs). The effect of taking into account the length-scale parameter on the coupled nonlinear dynamic response of the system is also highlighted.

References

References
1.
Ouakad
,
H. M.
,
2013
, “
An Electrostatically Actuated MEMS Arch Band-Pass Filter
,”
Shock Vib.
,
20
(
4
), pp.
809
819
.
2.
Wang
,
W.
, and
Soper
,
S. A.
,
2006
,
Bio-MEMS: Technologies and Applications
,
Taylor & Francis
, Boca Raton, FL.
3.
Abdel-Rahman
,
E. M.
,
Younis
,
M. I.
, and
Nayfeh
,
A. H.
,
2002
, “
Characterization of the Mechanical Behavior of an Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
,
12
(
6
), pp.
759
766
.
4.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A.
,
2003
, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
,
12
(
5
), pp.
672
680
.
5.
Younis
,
M. I.
, and
Nayfeh
,
A. H.
,
2003
, “
A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation
,”
Nonlinear Dyn.
,
31
(
1
), pp.
91
117
.
6.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
,
2005
, “
Dynamics of MEMS Resonators Under Superharmonic and Subharmonic Excitations
,”
J. Micromech. Microeng.
,
15
(
10
), pp.
1840
1847
.
7.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2010
, “
The Dynamic Behavior of MEMS Arch Resonators Actuated Electrically
,”
Int. J. Non Linear Mech.
,
45
(
7
), pp.
704
713
.
8.
Younis
,
M. I.
,
Ouakad
,
H. M.
,
Alsaleem
,
F. M.
,
Miles
,
R.
, and
Cui
,
W.
,
2010
, “
Nonlinear Dynamics of MEMS Arches Under Harmonic Electrostatic Actuation
,”
Microelectromech. Syst.
,
19
(
3
), pp.
647
656
.
9.
McFarland
,
A. W.
, and
Colton
,
J. S.
,
2005
, “
Role of Material Microstructure in Plate Stiffness With Relevance to Microcantilever Sensors
,”
J. Micromech. Microeng.
,
15
(
5
), p.
1060
.
10.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.
11.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1477
1508
.
12.
Farokhi
,
H.
, and
Ghayesh
,
M.
,
2015
, “
Size-Dependent Behaviour of Electrically Actuated Microcantilever-Based MEMS
,”
Int. J. Mech. Mater. Des.
(in press).
13.
Kong
,
S.
,
Zhou
,
S.
,
Nie
,
Z.
, and
Wang
,
K.
,
2008
, “
The Size-Dependent Natural Frequency of Bernoulli–Euler Micro-Beams
,”
Int. J. Eng. Sci.
,
46
(
5
), pp.
427
437
.
14.
Ma
,
H. M.
,
Gao
,
X. L.
, and
Reddy
,
J. N.
,
2008
, “
A Microstructure-Dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory
,”
J. Mech. Phys. Solids
,
56
(
12
), pp.
3379
3391
.
15.
Asghari
,
M.
,
Kahrobaiyan
,
M.
,
Rahaeifard
,
M.
, and
Ahmadian
,
M.
,
2011
, “
Investigation of the Size Effects in Timoshenko Beams Based on the Couple Stress Theory
,”
Arch. Appl. Mech.
,
81
(
7
), pp.
863
874
.
16.
Wang
,
B.
,
Zhao
,
J.
, and
Zhou
,
S.
,
2010
, “
A Micro Scale Timoshenko Beam Model Based on Strain Gradient Elasticity Theory
,”
Eur. J. Mech. A. Solids
,
29
(
4
), pp.
591
599
.
17.
Ansari
,
R.
,
Faghih Shojaei
,
M.
,
Gholami
,
R.
,
Mohammadi
,
V.
, and
Darabi
,
M. A.
,
2013
, “
Thermal Postbuckling Behavior of Size-Dependent Functionally Graded Timoshenko Microbeams
,”
Int. J. Non Linear Mech.
,
50
, pp.
127
135
.
18.
Ansari
,
R.
,
Gholami
,
R.
,
Faghih Shojaei
,
M.
,
Mohammadi
,
V.
, and
Sahmani
,
S.
,
2013
, “
Size-Dependent Bending, Buckling and Free Vibration of Functionally Graded Timoshenko Microbeams Based on the Most General Strain Gradient Theory
,”
Compos. Struct.
,
100
, pp.
385
397
.
19.
Ansari
,
R.
,
Gholami
,
R.
, and
Sahmani
,
S.
,
2011
, “
Free Vibration Analysis of Size-Dependent Functionally Graded Microbeams Based on the Strain Gradient Timoshenko Beam Theory
,”
Compos. Struct.
,
94
(
1
), pp.
221
228
.
20.
Nateghi
,
A.
,
Salamat-Talab
,
M.
,
Rezapour
,
J.
, and
Daneshian
,
B.
,
2012
, “
Size Dependent Buckling Analysis of Functionally Graded Micro Beams Based on Modified Couple Stress Theory
,”
Appl. Math. Modell.
,
36
(
10
), pp.
4971
4987
.
21.
Akgöz
,
B.
, and
Civalek
,
Ö.
,
2012
, “
Analysis of Micro-Sized Beams for Various Boundary Conditions Based on the Strain Gradient Elasticity Theory
,”
Arch. Appl. Mech.
,
82
(
3
), pp.
423
443
.
22.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2014
, “
On Using the Dynamic Snap-Through Motion of MEMS Initially Curved Microbeams for Filtering Applications
,”
J. Sound Vib.
,
333
(
2
), pp.
555
568
.
23.
Farokhi
,
H.
,
Ghayesh
,
M.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Resonant Behavior of Microbeams Over the Buckled State
,”
Appl. Phys. A
,
113
(2), pp.
297
307
.
24.
Ramezani
,
S.
,
2012
, “
A Micro Scale Geometrically Non-Linear Timoshenko Beam Model Based on Strain Gradient Elasticity Theory
,”
Int. J. Non Linear Mech.
,
47
(
8
), pp.
863
873
.
25.
Asghari
,
M.
,
Kahrobaiyan
,
M. H.
, and
Ahmadian
,
M. T.
,
2010
, “
A Nonlinear Timoshenko Beam Formulation Based on the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
48
(
12
), pp.
1749
1761
.
26.
Salamat-talab
,
M.
,
Nateghi
,
A.
, and
Torabi
,
J.
,
2012
, “
Static and Dynamic Analysis of Third-Order Shear Deformation FG Micro Beam Based on Modified Couple Stress Theory
,”
Int. J. Mech. Sci.
,
57
(
1
), pp.
63
73
.
27.
Şimşek
,
M.
, and
Reddy
,
J. N.
,
2013
, “
Bending and Vibration of Functionally Graded Microbeams Using a New Higher Order Beam Theory and the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
64
, pp.
37
53
.
28.
Şimşek
,
M.
, and
Reddy
,
J. N.
,
2013
, “
A Unified Higher Order Beam Theory for Buckling of a Functionally Graded Microbeam Embedded in Elastic Medium Using Modified Couple Stress Theory
,”
Compos. Struct.
,
101
, pp.
47
58
.
29.
Sahmani
,
S.
, and
Ansari
,
R.
,
2013
, “
Size-Dependent Buckling Analysis of Functionally Graded Third-Order Shear Deformable Microbeams Including Thermal Environment Effect
,”
Appl. Math. Modell.
,
37
(
23
), pp.
9499
9515
.
30.
Zhang
,
B.
,
He
,
Y. M.
,
Liu
,
D. B.
,
Gan
,
Z. P.
, and
Shen
,
L.
,
2014
, “
Size-Dependent Functionally Graded Beam Model Based on an Improved Third-Order Shear Deformation Theory
,”
Eur. J. Mech. A-Solid
,
47
, pp.
211
230
.
31.
Ghayesh
,
M.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2013
, “
Coupled Nonlinear Size-Dependent Behaviour of Microbeams
,”
Appl. Phys. A
,
112
(
2
), pp.
329
338
.
32.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2014
, “
In-Plane and Out-of-Plane Motion Characteristics of Microbeams With Modal Interactions
,”
Compos. Part B: Eng.
,
60
, pp.
423
439
.
33.
Gholipour
,
A.
,
Farokhi
,
H.
, and
Ghayesh
,
M.
,
2014
, “
In-Plane and Out-Of-Plane Nonlinear Size-Dependent Dynamics of Microplates
,”
Nonlinear Dyn.
,
79
(3), pp.
1771
1785
.
34.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2015
, “
Nonlinear Dynamical Behaviour of Geometrically Imperfect Microplates Based on Modified Couple Stress Theory
,”
Int. J. Mech. Sci.
,
90
, pp.
133
144
.
35.
Ghayesh
,
M. H.
, and
Farokhi
,
H.
,
2015
, “
Nonlinear Dynamics of Microplates
,”
Int. J. Eng. Sci.
,
86
, pp.
60
73
.
36.
Ghayesh
,
M. H.
,
Amabili
,
M.
, and
Farokhi
,
H.
,
2013
, “
Three-Dimensional Nonlinear Size-Dependent Behaviour of Timoshenko Microbeams
,”
Int. J. Eng. Sci.
,
71
, pp.
1
14
.
37.
Benedettini
,
F.
, and
Rega
,
G.
,
1987
, “
Non-Linear Dynamics of an Elastic Cable Under Planar Excitation
,”
Int. J. Non Linear Mech.
,
22
(
6
), pp.
497
509
.
38.
Rega
,
G.
, and
Benedettini
,
F.
,
1989
, “
Planar Non-Linear Oscillations of Elastic Cables Under Subharmonic Resonance Conditions
,”
J. Sound Vib.
,
132
(
3
), pp.
367
381
.
You do not currently have access to this content.