Based on combination synchronization of three chaotic systems and combination–combination synchronization of four chaotic systems, a novel scheme of dual combination synchronization is investigated for six chaotic systems in the paper. Using combined adaptive control and Lyapunov stability theory of chaotic systems, some sufficient conditions are attained to realize dual combination synchronization of six chaotic systems. The corresponding theoretical proofs and numerical simulations are presented to demonstrate the effectiveness and correctness of the dual combination synchronization. Due to the complexity of dual combination synchronization, it will be more secure and interesting to transmit and receive signals in application of communication.

References

References
1.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.
2.
Sun
,
J.
, and
Shen
,
Y.
,
2015
, “
Quasi-Ideal Memory System
,”
IEEE Trans. Cybern.
,
45
(
7
), pp.
1353
1362
.
3.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Complexity and Chaos in Nuclear Dynamics
,”
Phys. Rev. Lett.
,
64
(
8
), pp.
821
824
.
4.
Ge
,
Z.
, and
Chen
,
Y.
,
2004
, “
Synchronization of Unidirectional Coupled Chaotic Systems Via Partial Stability
,”
Chaos, Solitons Fractals
,
21
(
1
), pp.
101
111
.
5.
Chen
,
D.
,
Zhao
,
W.
,
Liu
,
X.
, and
Ma
,
X.
,
2015
, “
Synchronization and Antisynchronization of a Class of Chaotic Systems With Nonidentical Orders and Uncertain Parameters
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(1), p.
011003
.
6.
Koronovskii
,
A. A.
,
Moskalenko
,
O. I.
, and
Hramov
,
A. E.
,
2010
, “
Hidden Data Transmission Using Generalized Synchronization in the Presence of Noise
,”
Theor. Math. Phys.
,
55
(4), pp.
435
441
.
7.
Roy
,
P. K.
,
Hens
,
C.
,
Grosu
,
I.
, and
Dana
,
S. K.
,
2011
, “
Engineering Generalized Synchronization in Chaotic Oscillators
,”
Chaos
,
21
(
1
), p.
013106
.
8.
Rosenblum
,
M. G.
,
Pikovsky
,
A. S.
, and
Kurths
,
J.
,
1996
, “
Phase Synchronization of Chaotic Oscillators
,”
Phys. Rev. Lett.
,
76
(
11
), pp.
1804
1807
.
9.
Shuai
,
J. W.
, and
Durand
,
D. M.
,
1999
, “
Phase Synchronization in Two Coupled Chaotic Neurons
,”
Phys. Lett. A
,
264
(
4
), pp.
289
297
.
10.
Ho
,
M. C.
,
Hung
,
Y. C.
, and
Chou
,
C. H.
,
2002
, “
Phase and Anti-Phase Synchronization of Two Chaotic Systems by Using Active Control
,”
Phys. Lett. A
,
296
(
1
), pp.
43
48
.
11.
Zigzag
,
M.
,
Butkovski
,
M.
,
Englert
,
A.
,
Kinzel
,
W.
, and
Kanter
,
I.
,
2009
, “
Zero-Lag Synchronization of Chaotic Units With Time-Delayed Couplings
,”
Europhys. Lett.
,
85
(
6
), p.
60005
.
12.
Liu
,
P.
,
2015
, “
Adaptive Hybrid Function Projective Synchronization of General Chaotic Complex Systems With Different Orders
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021018
.
13.
Zhang
,
F.
, and
Liu
,
S.
,
2014
, “
Full State Hybrid Projective Synchronization and Parameters Identification for Uncertain Chaotic (Hyperchaotic) Complex Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(2), p.
021009
.
14.
Sun
,
J.
,
Shen
,
Y.
, and
Zhang
,
G.
,
2012
, “
Transmission Projective Synchronization of Multi-Systems With Non-Delayed and Delayed Coupling Via Impulsive Control
,”
Chaos
,
22
(
4
), p.
043107
.
15.
Hramov
,
A. E.
, and
Koronovskii
,
A. A.
,
2005
, “
Time Scale Synchronization of Chaotic Oscillators
,”
Physica D
,
206
(3), pp.
252
264
.
16.
Luo
,
R.
,
Wang
,
Y.
, and
Deng
,
S.
,
2011
, “
Combination Synchronization of Three Classic Chaotic Systems Using Active Backstepping Design
,”
Chaos
,
21
(4), p.
043114
.
17.
Luo
,
R.
, and
Wang
,
Y.
,
2012
, “
Finite-Time Stochastic Combination Synchronization of Three Different Chaotic Systems and Its Application in Secure Communication
,”
Chaos
,
22
(2), p.
023109
.
18.
Sun
,
J.
,
Shen
,
Y.
,
Zhang
,
G.
,
Xu
,
C.
, and
Cui
,
G.
,
2012
, “
Combination-Combination Synchronization Among Four Identical or Different Chaotic Systems
,”
Nonlinear Dyn.
,
73
(3), pp.
1211
1222
.
19.
Sun
,
J.
,
Shen
,
Y.
,
Wang
,
X.
, and
Chen
,
J.
,
2014
, “
Finite-Time Combination-Combination Synchronization of Four Different Chaotic Systems With Unknown Parameters Via Sliding Mode Control
,”
Nonlinear Dyn.
,
76
(
1
), pp.
383
397
.
20.
Sun
,
J.
,
Shen
,
Y.
,
Yin
,
Q.
, and
Xu
,
C.
,
2013
, “
Compound Synchronization of Four Memristor Chaotic Oscillator Systems and Secure Communication
,”
Chaos
,
23
(
1
), p.
013140
.
21.
Sun
,
J.
,
Yin
,
Q.
, and
Shen
,
Y.
,
2014
, “
Compound Synchronization for Four Chaotic Systems of Integer Order and Fractional Order
,”
Europhys. Lett.
,
106
(
4
), p.
40005
.
22.
Tsimring
,
L. S.
, and
Sushchik
,
M. M.
,
1996
, “
Multiplexing Chaotic Signals Using Synchronization
,”
Phys. Lett. A
,
213
(3), pp.
155
166
.
23.
Liu
,
Y.
, and
Davids
,
P.
,
2000
, “
Dual Synchronization of Chaos
,”
Phys. Rev. E
,
61
(3), pp.
2176
2179
.
24.
Ning
,
D.
,
Lu
,
J.
, and
Han
,
X.
,
2007
, “
Dual Synchronization Based on Two Different Chaotic Systems: Lorenz Systems and Rossler Systems
,”
J. Comput. Appl. Math.
,
206
(
2
), pp.
1046
1050
.
25.
Salarieh
,
H.
, and
Shahrokhi
,
M.
,
2008
, “
Dual Synchronization of Chaotic Systems Via Time-Varying Gain Proportional Feedback
,”
Chaos, Solitons Fractals
,
38
(
5
), pp.
1342
1348
.
You do not currently have access to this content.