In this paper, an advanced algorithm is presented to efficiently form and solve the equations of motion of multibody problems involving uncertainty in the system parameters and/or excitations. Uncertainty is introduced to the system through the application of polynomial chaos expansion (PCE). In this scheme, states of the system, nondeterministic parameters, and constraint loads are projected onto the space of specific orthogonal base functions through modal values. Computational complexity of traditional methods of forming and solving the resulting governing equations drastically grows as a cubic function of the size of the nondeterministic system which is significantly larger than the original deterministic multibody problem. In this paper, the divide-and-conquer algorithm (DCA) will be extended to form and solve the nondeterministic governing equations of motion avoiding the construction of the mass and Jacobian matrices of the entire system. In this strategy, stochastic governing equations of motion of each individual body as well as those associated with kinematic constraints at connecting joints are developed in terms of base functions and modal terms. Then using the divide-and-conquer scheme, the entire system is swept in the assembly and disassembly passes to recursively form and solve nondeterministic equations of motion for modal values of spatial accelerations and constraint loads. In serial and parallel implementations, computational complexity of the method is expected to, respectively, increase as a linear and logarithmic function of the size.

References

References
1.
Poursina
,
M.
,
Bhalerao
,
K. D.
,
Flores
,
S.
,
Anderson
,
K. S.
, and
Laederach
,
A.
,
2011
, “
Strategies for Articulated Multibody-Based Adaptive Coarse Grain Simulation of RNA
,”
Methods Enzymol.
,
487
, pp.
73
98
.
2.
Anderson
,
K. S.
,
1990
, “
Recursive Derivation of Explicit Equations of Motion for Efficient Dynamic/Control Simulation of Large Multibody Systems
,” Ph.D. thesis, Stanford University, Stanford, CA.
3.
Armstrong
,
W. W.
,
1979
, “
Recursive Solution to the Equations of Motion of an n-Link Manipulator
,”
Fifth World Congress on the Theory of Machines and Mechanisms
, Vol.
2
, pp.
1342
1346
.
4.
Bae
,
D. S.
, and
Haug
,
E. J.
,
1987
, “
A Recursive Formation for Constrained Mechanical System Dynamics: Part I, Open Loop Systems
,”
Mech. Struct. Mach.
,
15
(
3
), pp.
359
382
.
5.
Brandl
,
H.
,
Johanni
,
R.
, and
Otter
,
M.
,
1986
, “
A Very Efficient Algorithm for the Simulation of Robots and Similar Multibody Systems Without Inversion of the Mass Matrix
,”
IFAC/IFIP/IMACS Symposium
, pp.
95
100
.
6.
Featherstone
,
R.
,
1983
, “
The Calculation of Robotic Dynamics Using Articulated Body Inertias
,”
Int. J. Rob. Res.
,
2
(
1
), pp.
13
30
.
7.
Featherstone
,
R.
,
1987
,
Robot Dynamics Algorithms
,
Kluwer Academic Publishing
, Norwell, MA.
8.
Luh
,
J. S. Y.
,
Walker
,
M. W.
, and
Paul
,
R. P. C.
,
1980
, “
On-Line Computational Scheme for Mechanical Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
102
(
2
), pp.
69
76
.
9.
Neilan
,
P. E.
,
1986
, “
Efficient Computer Simulation of Motions of Multibody Systems
,” Ph.D. thesis, Stanford University, Stanford, CA.
10.
Rosenthal
,
D.
,
1990
, “
An Order n Formulation for Robotic Systems
,”
J. Astronaut. Sci.
,
38
(
4
), pp.
511
529
.
11.
Rosenthal
,
D. E.
, and
Sherman
,
M. A.
,
1986
, “
High Performance Multibody Simulations Via Symbolic Equation Manipulation and Kane's Method
,”
J. Astronaut. Sci.
,
34
(
3
), pp.
223
239
.
12.
Vereshchagin
,
A. F.
,
1974
, “
Computer Simulation of the Dynamics of Complicated Mechanisms of Robot-Manipulators
,”
Eng. Cybernet.
,
12
(
6
), pp.
65
70
.
13.
Walker
,
M. W.
, and
Orin
,
D. E.
,
1982
, “
Efficient Dynamic Computer Simulation of Robotic Mechanisms
,”
ASME J. Dyn. Syst. Meas. Control
,
104
(
3
), pp.
205
211
.
14.
Sandu
,
A.
,
Sandu
,
C.
, and
Ahmadian
,
M.
,
2006
, “
Modeling Multibody Systems With Uncertainties. Part I: Theoretical and Computational Aspects
,”
Multibody Syst. Dyn.
,
15
(
4
), pp.
369
391
.
15.
Sandu
,
C.
,
Sandu
,
A.
, and
Ahmadian
,
M.
,
2006
, “
Modeling Multibody Systems With Uncertainties. Part II: Numerical Applications
,”
Multibody Syst. Dyn.
,
15
(
3
), pp.
241
262
.
16.
Murthy
,
R.
,
El-Shafei
,
A.
, and
Mignolet
,
M.
,
2010
, “
Nonparametric Stochastic Modeling of Uncertainty in Rotordynamics—Part I: Formulation
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), p.
092501
.
17.
Murthy
,
R.
,
El-Shafei
,
A.
, and
Mignolet
,
M.
,
2010
, “
Nonparametric Stochastic Modeling of Uncertainty in Rotordynamics—Part II: Applications
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), p.
092502
.
18.
Soize
,
C.
,
2000
, “
A Nonparametric Model of Random Uncertainties for Reduced Matrix Models in Structural Dynamics
,”
Probab. Eng. Mech.
,
15
(
3
), pp.
277
294
.
19.
Soize
,
C.
,
2001
, “
Maximum Entropy Approach for Modeling Random Uncertainties in Transient Elastodynamics
,”
J. Acoust. Soc. Am.
,
109
(
5
), pp.
1979
1996
.
20.
Batou
,
A.
, and
Soize
,
C.
,
2012
, “
Rigid Multibody System Dynamics With Uncertain Rigid Bodies
,”
Multibody Syst. Dyn.
,
27
(
3
), pp.
285
319
.
21.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
22.
Ghanem
,
R.
,
Red-Horse
,
J.
, and
Sarkar
,
A.
,
2000
, “
Modal Properties of a Space-Frame With Localized System Uncertainties
,” PMC2000, ASCE Probabilistic Mechanics Conference, Notre Dame, IN, June 24–26.
23.
Xiu
,
D.
,
Lucor
,
D.
,
Su
,
C.-H.
, and
Karniadakis
,
G. E.
,
2002
, “
Stochastic Modeling of Flow–Structure Interactions Using Generalized Polynomial Chaos
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
51
59
.
24.
Ghanem
,
R.
,
1999
, “
Stochastic Finite Elements for Heterogeneous Media With Multiple Random Non-Gaussian Properties
,”
J. Eng. Mech. (ASCE)
,
125
(
1
), pp.
26
40
.
25.
Kim
,
D.
,
Debusschere
,
B. J.
, and
Najm
,
H. N.
,
2007
, “
Spectral Methods for Parametric Sensitivity in Stochastic Dynamical Systems
,”
Biophys. J.
,
92
(
2
), pp.
379
393
.
26.
Fagiano
,
L.
, and
Khammash
,
M.
,
2012
, “
Simulation of Stochastic Systems Via Polynomial Chaos Expansions and Convex Optimization
,”
Phys. Rev. E
,
86
(
3
), p.
036702
.
27.
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
2006
, “
Application of Polynomial Chaos in Stability and Control
,”
Automatica
,
42
(
5
), pp.
789
795
.
28.
Eldred
,
M. S.
, and
Burkhardt
,
J.
,
2009
, “
Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification
,”
AIAA
Paper No. 2009-976.
29.
Mukherjee
,
R.
, and
Anderson
,
K. S.
,
2007
, “
An Orthogonal Complement Based Divide-and-Conquer Algorithm for Constrained Multibody Systems
,”
Nonlinear Dyn.
,
48
(
1–2
), pp.
199
215
.
30.
Poursina
,
M.
, and
Anderson
,
K.
,
2013
, “
An Extended Divide-and-Conquer Algorithm for a Generalized Class of Multibody Constraints
,”
Multibody Syst. Dyn.
,
29
(
3
), pp.
235
254
.
31.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
32.
Cameron
,
R. H.
, and
Martin
,
W. T.
,
1947
, “
The Orthogonal Development of Non-Linear Functionals in Series of Fourier–Hermite Functionals
,”
Ann. Math.
,
48
(
2
), pp.
385
392
.
33.
Featherstone
,
R.
,
1999
, “
A Divide-and-Conquer Articulated Body Algorithm for Parallel O(log(n)) Calculation of Rigid Body Dynamics. Part 1: Basic Algorithm
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
867
875
.
34.
Featherstone
,
R.
,
1999
, “
A Divide-and-Conquer Articulated Body Algorithm for Parallel O(log(n)) Calculation of Rigid Body Dynamics. Part 2: Trees, Loops, and Accuracy
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
876
892
.
35.
Laflin
,
J.
,
Anderson
,
K. S.
,
Khan
,
I. M.
, and
Poursina
,
M.
,
2014
, “
Advances in the Application of the Divide-and-Conquer Algorithm to Multibody System Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041003
.
36.
Laflin
,
J.
,
Anderson
,
K. S.
,
Khan
,
I. M.
, and
Poursina
,
M.
,
2014
, “
New and Extended Applications of the Divide-and-Conquer Algorithm for Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041004
.
37.
Poursina
,
M.
,
Khan
,
I.
, and
Anderson
,
K. S.
,
2012
, “
Efficient Model Transition in Adaptive Multi-Resolution Modeling of Biopolymers
,”
Linear Algebra Theorems and Applications
,
H. A.
Yasser
, ed.
INTECH
, Croatia, pp.
237
250
.
38.
Bhalerao
,
K. D.
,
Poursina
,
M.
, and
Anderson
,
K. S.
,
2010
, “
An Efficient Direct Differentiation Approach for Sensitivity Analysis of Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
23
(
2
), pp.
121
140
.
39.
Mukherjee
,
R.
, and
Anderson
,
K. S.
,
2007
, “
A Logarithmic Complexity Divide-and-Conquer Algorithm for Multi-Flexible Articulated Body Systems
,”
Comput. Nonlinear Dyn.
,
2
(
1
), pp.
10
21
.
40.
Mukherjee
,
R. M.
, and
Anderson
,
K. S.
,
2007
, “
Efficient Methodology for Multibody Simulations With Discontinuous Changes in System Definition
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
145
168
.
41.
Mukherjee
,
R. M.
,
Bhalerao
,
K. D.
, and
Anderson
,
K. S.
,
2007
, “
A Divide-and-Conquer Direct Differentiation Approach for Multibody System Sensitivity Analysis
,”
Struct. Multidiscip. Optim.
,
35
(
5
), pp.
413
429
.
42.
Poursina
,
M.
, and
Anderson
,
K. S.
,
2013
, “
Canonical Ensemble Simulation of Biopolymers Using a Coarse-Grained Articulated Generalized Divide-and-Conquer Scheme
,”
Comput. Phys. Commun.
,
184
(
3
), pp.
652
660
.
43.
Malczyk
,
P.
, and
Frczek
,
J.
,
2014
, “
Molecular Dynamics Simulation of Simple Polymer Chain Formation Using Divide and Conquer Algorithm Based on the Augmented Lagrangian Method
,”
Proc. Inst. Mech. Eng., Part K
,
229
(
2
), pp.
116
131
.
44.
Roberson
,
R. E.
, and
Schwertassek
,
R.
,
1988
,
Dynamics of Multibody Systems
,
Springer-Verlag
, Berlin.
You do not currently have access to this content.