In this paper, we prove that unviolated simple Leibniz rule and equation for fractional-order derivative of power function cannot hold together for derivatives of orders α1. To prove this statement, we use an algebraic approach, where special form of fractional-order derivatives is not applied.

References

References
1.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1987
,
Integrals and Derivatives of Fractional Order and Applications
,
Nauka i Tehnika
,
Minsk, Belarus
.
2.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives Theory and Applications
,
Gordon and Breach
,
New York
.
3.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2003
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
Amsterdam, The Netherlands
.
4.
Valerio
,
D.
,
Trujillo
,
J. J.
,
Rivero
,
M.
,
Tenreiro Machado
,
J. A.
, and
Baleanu
,
D.
,
2013
, “
Fractional Calculus: A Survey of Useful Formulas
,”
Eur. Phys. J.
,
222
(
8
), pp.
1827
1846
.
5.
Tenreiro Machado
,
J.
,
Kiryakova
,
V.
, and
Mainardi
,
F.
,
2011
, “
Recent History of Fractional Calculus
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1140
1153
.
6.
Tenreiro Machado
,
J. A.
,
Galhano
,
A. M. S. F.
, and
Trujillo
,
J. J.
,
2014
, “
On Development of Fractional Calculus During the Last Fifty Years
,”
Scientometrics
,
98
(
1
), pp.
577
582
.
7.
Tarasov
,
V. E.
,
2013
, “
No Violation of the Leibniz Rule. No Fractional Derivative
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
11
), pp.
2945
2948
.
8.
Liouville
,
J.
,
1832
, “
Memoire sur le Calcul des Differentielles a Indices Quelconques
,”
J. Ec. R. Polytech.
,
13
, pp.
71
162
.
9.
Osler
,
T. J.
,
1970
, “
Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series
,”
SIAM J. Appl. Math.
,
18
(
3
), pp.
658
674
.
10.
Osler
,
T. J.
,
1971
, “
Fractional Derivatives and Leibniz Rule
,”
Am. Math. Mon.
,
78
(
6
), pp.
645
649
.
11.
Osler
,
T. J.
,
1972
, “
A Further Extension of the Leibniz Rule to Fractional Derivatives and Its Relation to Parseval's Formula
,”
SIAM J. Math. Anal.
,
3
(
1
), pp.
1
16
.
12.
Osler
,
T. J.
,
1973
, “
A Correction to Leibniz Rule for Fractional Derivatives
,”
SIAM J. Math. Anal.
,
4
(
3
), pp.
456
459
.
13.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Tenreiro Machado
,
J. A.
, eds.,
2007
,
Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering
,
Springer
,
Dordrecht, The Netherlands
.
14.
Mainardi
,
F.
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
,
World Scientific
,
Singapore
.
15.
Tarasov
,
V. E.
,
2011
,
Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media
,
Springer
,
New York
.
16.
Gambo
,
Y. Y.
,
Jarad
,
F.
,
Baleanu
,
D.
, and
Abdeljawad
,
T.
,
2014
, “
On Caputo Modification of the Hadamard Fractional Derivatives
,”
Adv. Differ. Equations
,
10
, pp.
1
12
.
17.
Podlubny
,
I.
,
1998
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
18.
Diethelm
,
K.
,
2010
,
The Analysis of Fractional Differential Equations
,
Springer
,
Berlin
.
19.
Tarasov
,
V. E.
,
2015
, “
Comments on ‘The Minkowski's Space–Time Is Consistent With Differential Geometry of Fractional Order,’ [Physics Letters A 363 (2007) 5–11]
,”
Phys. Lett. A.
,
379
(
14–15
), pp.
1071
1072
.
20.
Jumarie
,
G.
,
2013
, “
The Leibniz Rule for Fractional Derivatives Holds With Non-Differentiable Functions
,”
Math. Stat.
,
1
(
2
), pp.
50
52
.
21.
Weberszpil
,
J.
,
2014
, “
Validity of the Fractional Leibniz Rule on a Coarse-Grained Medium Yields a Modified Fractional Chain Rule
,” e-print arXiv:1405.4581.
22.
Wang
,
X.
,
2014
, “
On the Leibniz Rule and Fractional Derivative for Differentiable and Non-Differentiable Functions
,” e-print viXra:1404.0072.
23.
Jumarie
,
G.
,
2006
, “
Modified Riemann–Liouville Derivative and Fractional Taylor Series of Non-Differentiable Functions Further Results
,”
Math. Comput. Appl.
,
51
(
9–10
), pp.
1367
1376
.
24.
Jumarie
,
G.
,
2007
, “
Lagrangian Mechanics of Fractional Order, Hamilton–Jacobi Fractional PDE and Taylor's Series of Nondifferentiable Functions
,”
Chaos, Solitons Fractals
,
32
(
3
), pp.
969
987
.
25.
Jumarie
,
G.
,
2007
, “
The Minkowski's Space–Time is Consistent With Differential Geometry of Fractional Order
,”
Phys. Lett. A.
,
363
(
1–2
), pp.
5
11
.
26.
Jumarie
,
G.
,
2009
, “
Table of Some Basic Fractional Calculus Formulae Derived From a Modified Riemann–Liouville Derivative for Nondifferentiable Functions
,”
Appl. Math. Lett.
,
22
(
3
), pp.
378
385
.
27.
Jumarie
,
G.
,
2009
, “
From Lagrangian Mechanics Fractal in Space to Space Fractal Schrodinger's Equation Via Fractional Taylor's Series
,”
Chaos, Solitons Fractals
,
41
(
4
), pp.
1590
1604
.
28.
Jumarie
,
G.
,
2009
, “
Probability Calculus of Fractional Order and Fractional Taylor's Series Application to Fokker–Planck Equation and Information of Non-Random Functions
,”
Chaos, Solitons Fractals
,
40
(
3
), pp.
1428
1448
.
29.
Jumarie
,
G.
,
2009
, “
Oscillation of Non-Linear Systems Close to Equilibrium Position in the Presence of Coarse-Graining in Time and Space
,”
Nonlinear Anal.
,
14
(
2
), pp.
177
197
.
30.
Jumarie
,
G.
,
2010
, “
An Approach Via Fractional Analysis to Non-Linearity Induced by Coarse-Graining in Space
,”
Nonlinear Anal.
,
11
(
1
), pp.
535
546
.
31.
Jumarie
,
G.
,
2013
, “
On the Derivative Chain-Rules in Fractional Calculus Via Fractional Difference and Their Application to Systems Modelling
,”
Cent. Eur. J. Phys.
,
11
(
6
), pp.
617
633
.
32.
Godinho
,
C. F. L.
,
Weberszpil
,
J.
, and
Helayel-Neto
,
J. A.
,
2012
, “
Extending the D'Alembert Solution to Space–Time Modified Riemann–Liouville Fractional Wave Equations
,”
Chaos, Solitons Fractals
,
45
(
6
), pp.
765
771
.
33.
Weberszpil
,
J.
, and
Helayel-Neto
,
J. A.
,
2014
, “
Anomalous g-factors for Charged Leptons in a Fractional Coarse-Grained Approach
,”
Adv. High Energy Phys.
,
2014
, p.
572180
.
34.
Almeida
,
R.
, and
Torres
,
D. F. M.
,
2011
, “
Fractional Variational Calculus for Nondifferentiable Functions
,”
Comput. Math. Appl.
,
61
(
10
), pp.
3097
3104
.
35.
Gomez S
.,
C. A
,
2014
, “
A Note on the Exact Solution for the Fractional Burgers Equation
,”
Int. J. Pure Appl. Math.
,
93
(
2
), pp.
229
232
.
36.
Zheng
,
B.
, and
Wen
,
C.
,
2013
, “
Exact Solutions for Fractional Partial Differential Equations by a New Fractional Sub-Equation Method
,”
Adv. Differ. Equations
,
199
, pp.
1
12
.
37.
Kolwankar
,
K. M.
, and
Gangal
,
A. D.
,
1996
, “
Fractional Differentiability of Nowhere Differentiable Functions and Dimensions
,”
Chaos
,
6
(
4
), pp.
505
513
.
38.
Kolwankar
,
K. M.
, and
Gangal
,
A. D.
,
1997
, “
Holder Exponents of Irregular Signals and Local Fractional Derivatives
,”
Pramana
,
48
(
1
), pp.
49
68
.
39.
Kolwankar
,
K. M.
,
2013
, “
Local Fractional Calculus: A Review
,” e-print arXiv:1307.0739.
40.
Ben Adda
,
F.
, and
Cresson
,
J.
,
2001
, “
About Non-Differentiable Functions
,”
J. Math. Anal. Appl.
,
263
(
2
), pp.
721
737
.
41.
Liu
,
C.-S.
,
2015
, “
Counterexamples on Jumarie's Two Basic Fractional Calculus Formulae
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1–3
), pp.
92
94
.
42.
Tarasov
,
V. E.
,
2016
, “
On Chain Rule for Fractional Derivatives
,”
Commun. Nonlinear Sci. Numer. Simul.
,
30
(
1–3
), pp.
1
4
.
43.
Ortigueira
,
M. D.
, and
Tenreiro Machado
,
J. A.
, “
What is a Fractional Derivative?
,”
J. Comput. Phys.
,
293
, pp.
4
13
.
44.
Tarasov
,
V. E.
,
2015
, “
Local Fractional Derivatives of Differentiable Functions are Integer-Order Derivatives or Zero
,”
Int. J. Appl. Comput. Math.
(in press).
45.
Tarasov
,
V. E.
,
2008
,
Quantum Mechanics of Non-Hamiltonian and Dissipative Systems
,
Elsevier Science
,
New York
.
46.
Ammer
,
C.
,
1997
, “
Throw Out the Baby With the Bath Water
,”
The American Heritage Dictionary of Idioms
,
Houghton Mifflin Harcourt
,
Boston
.
47.
Tarasov
,
V. E.
,
2015
, “
Comments on ‘Riemann–Christoffel Tensor in Differential Geometry of Fractional Order Application to Fractal Space–Time,’ [Fractals 21 (2013) 1350004]
,”
Fractals
,
23
(
2
), p.
1575001
.
You do not currently have access to this content.