In this paper, we provide not only key knowledge for friction model selection among candidate models but also experimental friction features compared with numerical predictions reproduced by the candidate models. A motor-driven one-dimensional sliding block has been designed and fabricated in our lab to carry out a wide range of control tasks for the friction feature demonstrations and the parameter identifications of the candidate models. Besides the well-known static features such as break-away force and viscous friction, our setup experimentally demonstrates subtle dynamic features that characterize the physical behavior. The candidate models coupled with correct parameters experimentally obtained from our setup are taken to simulate the features of interest. The first part of this work briefly introduces the candidate friction models, the friction features of interest, and our experimental approach. The second part of this work is dedicated to the comparisons between the experimental features and the numerical model predictions. The discrepancies between the experimental features and the numerical model predictions help researchers to judge the accuracy of the models. The relation between the candidate model structures and their numerical friction feature predictions is investigated and discussed. A table that summarizes how to select the most optimal friction model among a variety of engineering applications is presented at the end of this paper. Such comprehensive comparisons have not been reported in previous literature.

References

References
1.
Kermani
,
M. R.
,
Wong
,
M.
,
Patel
,
R. V.
,
Moallem
,
M.
, and
Ostojic
,
M.
,
2004
, “
Friction Compensation in Low and High-Reversal-Velocity Manipulators
,”
IEEE
International Conference Robotics and Automation
, Apr. 26–May 1, Vol.
5
, pp.
4320
4325
.
2.
Koop
,
D.
,
1996
, “
Dynamics and Stability of Passive Dynamic Biped Walking Using an Advanced Mathematical Model
,” Master's thesis, University of Manitoba, Winnipeg, MB.
3.
Koop
,
D.
, and
Wu
,
C. Q.
,
2013
, “
Passive Dynamic Biped Walking-Part I: Development and Validation of an Advanced Model
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041007
.
4.
Haessig
,
D. A.
, and
Friedland
,
B.
,
1991
, “
On the Modeling and Simulation of Friction
,”
J. Dyn. Syst.—T. ASME
,
113
(
3
), pp.
354
362
.
5.
Karnopp
,
D.
,
1985
, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
107
(
1
), pp.
100
103
.
6.
De Wit
,
C. C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.
7.
Gafvert
,
M.
,
1997
, “
Comparisons of Two Dynamic Friction Models
,”
IEEE
International Conference
, Hartford, CT, Oct. 5–7, pp.
386
391
.
8.
De Wit
,
C. C.
,
Olsson
,
H.
,
Astrom
,
K.
, and
Lischinsky
,
P.
,
1993
, “
Dynamic Friction Models and Control Design
,”
IEEE American Control Conference
, pp.
1920
1926
.
9.
Song
,
X.
, and
Smedley
,
D. G.
,
2010
, “
Glitchless Static Friction Models in Simulink for Vehicle Simulation Study
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
014502
.
10.
Do
,
N. B.
,
Ferri
,
A. A.
, and
Bauchau
,
O. A.
,
2007
, “
Efficient Simulation of a Dynamic System With Lugre Friction
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
4
), pp.
281
289
.
11.
Yanada
,
H.
, and
Sekikawa
,
Y.
,
2008
, “
Modeling of Dynamic Behaviors of Friction
,”
Mechatronics
,
18
(
7
), pp.
330
339
.
12.
Thiery
,
S.
,
Kunze
,
M.
,
Karimi
,
A.
,
Curnier
,
A.
, and
Longchamp
,
R.
,
2006
, “
Friction Modeling of a High-Precision Positioning System
,”
IEEE
American Control Conference
, Minneapolis, MN, June 14–16, pp. 1863–1867.
13.
Swevers
,
J.
,
Al-Bender
,
F.
,
Ganseman
,
C. G.
, and
Projogo
,
T.
,
2000
, “
An Integrated Friction Model Structure With Improved Presliding Behavior for Accurate Friction Compensation
,”
IEEE Trans. Autom. Control
,
45
(
4
), pp.
675
686
.
14.
Olsson
,
H.
,
Åström
,
K. J.
,
Canudas de Wit
,
C.
,
Gäfvert
,
M.
, and
Lischinsky
,
P.
,
1998
, “
Friction Models and Friction Compensation
,”
Eur. J. Control
,
4
(
3
), pp.
176
195
.
15.
Coulomb
,
C.
,
1785
, “
Théories des Machines Simples en ayant égard au Frottement de leur Parties
,”
Acad. R. Sci., Mémoire de Math. Phys.
,
10
, pp.
161
342
.
16.
Dahl
,
P.
,
1968
, “
A Solid Friction Model
,” The Aerospace Corporation, Technical Report No. TOR-0158(3107-18)-1.
17.
Dahl
,
P. R.
,
1975
, “
Solid Friction Damping of Spacecraft Oscillations
,” DTIC Document, Technical Report No. TR-0076 (6901-03)-2.
18.
Dahl
,
P. R.
,
1977
, “
Measurement of Solid Friction Parameters of Ball Bearings
,” DTIC Document, Technical Report No. TR-0077(2901-03)-3.
19.
Bliman
,
P. A.
, and
Sorine
,
M.
,
1991
, “
Friction Modelling by Hysteresis Operators. Application to Dahl, Stiction and Stribeck Effects
,”
Conference Models of Hysteresis
, pp. 10–19.
20.
Bliman
,
P. A.
, and
Sorine
,
M.
,
1993
, “
A System-Theoretic Approach of Systems With Hysteresis. Application to Friction Modelling and Compensation
,”
2nd European Control Conference
, pp.
1844
1849
.
21.
Bliman
,
P. A.
, and
Sorine
,
M.
,
1995
, “
Easy-To-Use Realistic Dry Friction Models for Automatic Control
,”
3rd European Control Conference
, pp.
3788
3794
.
22.
Stribeck
,
R.
,
1901
, “
Kugellager fur Beliebige Belastungen
,”
Z. Ver. Dtsch. Ing.
,
45
(
3–4
), pp.
73
79
and 118–125.
23.
Stribeck
,
R.
,
1902
, “
Die Wesentlischen Eigenschaften der Gleit-Und Rollenlager
,”
Z. Ver. Dtsch. Ing.
,
46
(
38–39
), pp.
1342
1348
and 1432–1437.
24.
Bona
,
B.
,
Indri
,
M.
, and
Smaldone
,
N.
,
2003
, “
Nonlinear Friction Estimation for Digital Control of Direct-Drive Manipulators
,”
European Control Conference (ECC’03)
, Cambridge, UK.
25.
Nakanishi
,
J.
,
Fukuda
,
T.
, and
Koditschek
,
D. E.
,
2000
, “
A Brachiating Robot Controller
,”
IEEE Trans. Rob. Autom.
,
16
(
2
), pp.
109
123
.
26.
Johannes
,
V.
,
Green
,
M.
, and
Brockley
,
C.
,
1973
, “
The Role of the Rate of Application of the Tangential Force in Determining the Static Friction Coefficient
,”
Wear
,
24
(
3
), pp.
381
385
.
27.
Richardson
,
R.
, and
Nolle
,
H.
,
1976
, “
Surface Friction Under Time-Dependent Loads
,”
Wear
,
37
(
1
), pp.
87
101
.
28.
Rabinowicz
,
E.
,
1951
, “
The Nature of the Static and Kinetic Coefficients of Friction
,”
J. Appl. Phys.
,
22
(
11
), pp.
1373
1379
.
29.
Rabinowicz
,
E.
,
1958
, “
The Intrinsic Variables Affecting the Stick–Slip Process
,”
Proc. Phys. Soc.
,
71
(
4
), pp.
668
675
.
30.
Hess
,
D.
, and
Soom
,
A.
,
1990
, “
Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities
,”
ASME J. Tribol.
,
112
(
1
), pp.
147
152
.
31.
Wiercigroch
,
M.
,
Sin
,
V.
, and
Liew
,
Z.
,
1999
, “
Non-Reversible Dry Friction Oscillator: Design and Measurements
,”
Proc. Inst. Mech. Eng., Part C
,
213
(
5
), pp.
527
534
.
32.
Wojewoda
,
J.
,
Stefański
,
A.
,
Wiercigroch
,
M.
, and
Kapitaniak
,
T.
,
2008
, “
Hysteretic Effects of Dry Friction: Modelling and Experimental Studies
,”
Philos. R. Soc. A
,
366
(
1866
), pp.
747
765
.
33.
Wojewoda
,
J.
,
Barron
,
R.
, and
Kapitaniak
,
T.
,
1992
, “
Chaotic Behavior of Friction Force
,”
Int. J. Bifurcation Chaos
,
2
(01), pp.
205
209
.
34.
Guo
,
K.
,
Zhang
,
X.
,
Li
,
H.
, and
Meng
,
G.
,
2008
, “
Non-Reversible Friction Modeling and Identification
,”
Arch. Appl. Mech.
,
78
(
10
), pp.
795
809
.
35.
Stefański
,
A.
,
Wojewoda
,
J.
,
Wiercigroch
,
M.
, and
Kapitaniak
,
T.
,
2003
, “
Chaos Caused by Non-Reversible Dry Friction
,”
Chaos, Solitons Fractals
,
16
(
5
), pp.
661
664
.
36.
Armstrong-Helouvry
,
B.
,
1991
,
Control of Machines With Friction
, Vol.
128
,
Springer
, Norwell, MA.
37.
Courtney-Pratt
,
J.
, and
Eisner
,
E.
,
1957
, “
The Effect of a Tangential Force on the Contact of Metallic Bodies
,”
Proc. R. Soc. London. Ser. A.
,
238
(
1215
), pp.
529
550
.
38.
Worden
,
K.
,
Wong
,
C.
,
Parlitz
,
U.
,
Hornstein
,
A.
,
Engster
,
D.
,
Tjahjowidodo
,
T.
,
Al-Bender
,
F.
,
Rizos
,
D.
, and
Fassois
,
S.
,
2007
, “
Identification of Pre-Sliding and Sliding Friction Dynamics: Grey Box and Black-Box Models
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
514
534
.
39.
De Moerlooze
,
K.
, and
Al-Bender
,
F.
,
2010
, “
On the Relationship Between Normal Load and Friction Force in Pre-Sliding Frictional Contacts. Part 2: Experimental Investigation
,”
Wear
,
269
(
3
), pp.
183
189
.
40.
Hsieh
,
C.
, and
Pan
,
Y.-C.
,
2000
, “
Dynamic Behavior and Modelling of the Pre-Sliding Static Friction
,”
Wear
,
242
(
1
), pp.
1
17
.
41.
Sun
,
Y.
,
2014
, “
Comparison of Four Friction Models-Parameter Identification and Feature Prediction
,” Candidacy Report, University of Manitoba, Winnipeg, MB.
42.
Gafvert
,
M.
,
2012
, “
Comparison of Two Friction Models
,” Master's thesis, Lund University, Lund, Sweden.
43.
Cumming
,
G.
,
Fidler
,
F.
, and
Vaux
,
D. L.
,
2007
, “
Error Bars in Experimental Biology
,”
J. Cell Biol.
,
177
(
1
), pp.
7
11
.
44.
Olsson
,
H.
,
1996
, “
Control Systems With Friction
,” Ph.D. thesis, Lund University, Lund, Sweden.
45.
Mare
,
J.-C.
,
2012
, “
Friction Modeling and Simulation at System Level: A Practical View for the Designer
,”
Proc. Inst. Mech. Eng., Part I
,
226
(
6
), pp.
728
741
.
You do not currently have access to this content.