Complex industrial plants exhibit multiple interactions among smaller parts and with human operators. Failure in one part can propagate across subsystem boundaries causing a serious disaster. This paper analyzes the industrial accident data series in the perspective of dynamical systems. First, we process real world data and show that the statistics of the number of fatalities reveal features that are well described by power law (PL) distributions. For early years, the data reveal double PL behavior, while, for more recent time periods, a single PL fits better into the experimental data. Second, we analyze the entropy of the data series statistics over time. Third, we use the Kullback–Leibler divergence to compare the empirical data and multidimensional scaling (MDS) techniques for data analysis and visualization. Entropy-based analysis is adopted to assess complexity, having the advantage of yielding a single parameter to express relationships between the data. The classical and the generalized (fractional) entropy and Kullback–Leibler divergence are used. The generalized measures allow a clear identification of patterns embedded in the data.

References

References
1.
Bhattacharya
,
P.
,
Chakrabarti
,
B. K.
, and
Kamal
,
2011
, “
A Fractal Model of Earthquake Occurrence: Theory, Simulations and Comparisons With the Aftershock Data
,”
J. Phys.: Conf. Ser.
,
319
(
1
), p.
012004
.
2.
Turcotte
,
D. L.
, and
Malamud
,
B. D.
,
2002
, “
14 Earthquakes as a Complex System
,”
Int. Geophys.
,
81
, pp.
209
227
–IV.
3.
Makowiec
,
D.
,
Dudkowska
,
A.
,
Gałaska
,
R.
, and
Rynkiewicz
,
A.
,
2009
, “
Multifractal Estimates of Monofractality in RR-Heart Series in Power Spectrum Ranges
,”
Phys. A
,
388
(
17
), pp.
3486
3502
.
4.
Machado
,
J. T.
,
2012
, “
Accessing Complexity From Genome Information
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
6
), pp.
2237
2243
.
5.
Johnson
,
N. F.
,
Jefferies
,
P.
, and
Hui
,
P. M.
,
2003
,
Financial Market Complexity
,
Oxford University Press
,
Oxford
.
6.
Huang
,
W.-Q.
,
Zhuang
,
X.-T.
, and
Yao
,
S.
,
2009
, “
A Network Analysis of the Chinese Stock Market
,”
Phys. A
,
388
(
14
), pp.
2956
2964
.
7.
Amaral
,
L. A. N.
,
Scala
,
A.
,
Barthélémy
,
M.
, and
Stanley
,
H. E.
,
2000
, “
Classes of Small-World Networks
,”
Proc. Natl. Acad. Sci. U. S. A.
,
97
(
21
), pp.
11149
11152
.
8.
Sen
,
P.
,
Dasgupta
,
S.
,
Chatterjee
,
A.
,
Sreeram
,
P.
,
Mukherjee
,
G.
, and
Manna
,
S.
,
2003
, “
Small-World Properties of the Indian Railway Network
,”
Phys. Rev. E
,
67
(
3
), p.
036106
.
9.
M'Chirgui
,
Z.
,
2012
, “
Small-World or Scale-Free Phenomena in Internet: What Implications for the Next-Generation Networks?
,”
Rev. Eur. Stud.
,
4
(
1
), pp. 85–93.
10.
Zhang
,
W.-B.
,
2002
, “
Theory of Complex Systems and Economic Dynamics
,”
Nonlinear Dyn., Psychol., Life Sci.
,
6
(
2
), pp.
83
101
.
11.
Foxon
,
T. J.
,
Köhler
,
J.
,
Michie
,
J.
, and
Oughton
,
C.
,
2013
, “
Towards a New Complexity Economics for Sustainability
,”
Cambridge J. Econ.
,
37
(
1
), pp.
187
208
.
12.
Barabási
,
A.-L.
,
Jeong
,
H.
,
Néda
,
Z.
,
Ravasz
,
E.
,
Schubert
,
A.
, and
Vicsek
,
T.
,
2002
, “
Evolution of the Social Network of Scientific Collaborations
,”
Phys. A
,
311
(
3
), pp.
590
614
.
13.
Li
,
W.
,
Zhang
,
X.
, and
Hu
,
G.
,
2007
, “
How Scale-Free Networks and Large-Scale Collective Cooperation Emerge in Complex Homogeneous Social Systems
,”
Phys. Rev. E
,
76
(
4
), p.
045102
.
14.
Huberman
,
B. A.
,
Pirolli
,
P. L.
,
Pitkow
,
J. E.
, and
Lukose
,
R. M.
,
1998
, “
Strong Regularities in World Wide Web Surfing
,”
Science
,
280
(
5360
), pp.
95
97
.
15.
Adamic
,
L. A.
, and
Huberman
,
B. A.
,
2000
, “
Power-Law Distribution of the World Wide Web
,”
Science
,
287
(
5461
), p.
2115
.
16.
Kostić
,
S.
,
Vasović
,
N.
,
Franović
,
I.
, and
Todorović
,
K.
,
2014
, “
Complex Dynamics of Spring-Block Earthquake Model Under Periodic Parameter Perturbations
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031019
.
17.
Lopes
,
A. M.
, and
Machado
,
J. T.
,
2012
, “
Dynamical Behaviour of Multi-Particle Large-Scale Systems
,”
Nonlinear Dyn.
,
69
(
3
), pp.
913
925
.
18.
Strogatz
,
S. H.
,
2001
, “
Exploring Complex Networks
,”
Nature
,
410
(
6825
), pp.
268
276
.
19.
Haken
,
2006
,
Information and Self-Organization: A Macroscopic Approach to Complex Systems
,
Springer
,
Berlin, Heidelberg
.
20.
Pinto
,
C.
,
Lopes
,
A. M.
, and
Machado
,
J.
,
2012
, “
A Review of Power Laws in Real Life Phenomena
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
9
), pp.
3558
3578
.
21.
Newman
,
M. E.
,
2005
, “
Power Laws, Pareto Distributions and Zipf's Law
,”
Contemp. Phys.
,
46
(
5
), pp.
323
351
.
22.
Baleanu
,
D.
,
2008
, “
Fractional Constrained Systems and Caputo Derivatives
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2
), p.
021102
.
23.
Guzzetti
,
F.
,
Malamud
,
B. D.
,
Turcotte
,
D. L.
, and
Reichenbach
,
P.
,
2002
, “
Power-Law Correlations of Landslide Areas in Central Italy
,”
Earth Planet. Sci. Lett.
,
195
(
3
), pp.
169
183
.
24.
Balasis
,
G.
,
Daglis
,
I. A.
,
Papadimitriou
,
C.
,
Anastasiadis
,
A.
,
Sandberg
,
I.
, and
Eftaxias
,
K.
,
2011
, “
Quantifying Dynamical Complexity of Magnetic Storms and Solar Flares Via Nonextensive Tsallis Entropy
,”
Entropy
,
13
(
10
), pp.
1865
1881
.
25.
Levada
,
A.
,
2014
, “
Learning From Complex Systems: On the Roles of Entropy and Fisher Information in Pairwise Isotropic Gaussian Markov Random Fields
,”
Entropy
,
16
(
2
), pp.
1002
1036
.
26.
Seely
,
A. J.
,
Newman
,
K. D.
, and
Herry
,
C. L.
,
2014
, “
Fractal Structure and Entropy Production Within the Central Nervous System
,”
Entropy
,
16
(
8
), pp.
4497
4520
.
27.
Feldman
,
D. P.
, and
Crutchfield
,
J. P.
,
1998
, “
Measures of Statistical Complexity: Why?
,”
Phys. Lett. A
,
238
(
4
), pp.
244
252
.
28.
Kwapień
,
J.
, and
Drożdż
,
S.
,
2012
, “
Physical Approach to Complex Systems
,”
Phys. Rep.
,
515
(
3
), pp.
115
226
.
29.
Machado
,
J. A. T.
, and
Lopes
,
A. M.
,
2013
, “
Analysis and Visualization of Seismic Data Using Mutual Information
,”
Entropy
,
15
(
9
), pp.
3892
3909
.
30.
Pidgeon
,
N.
, and
O'Leary
,
M.
,
2000
, “
Man-Made Disasters: Why Technology and Organizations (Sometimes) Fail
,”
Saf. Sci.
,
34
(
1
), pp.
15
30
.
31.
Liu
,
T.
,
Zhong
,
M.
, and
Xing
,
J.
,
2005
, “
Industrial Accidents: Challenges for China's Economic and Social Development
,”
Saf. Sci.
,
43
(
8
), pp.
503
522
.
32.
Costa
,
M.
,
Goldberger
,
A. L.
, and
Peng
,
C.-K.
,
2002
, “
Multiscale Entropy Analysis of Complex Physiologic Time Series
,”
Phys. Rev. Lett.
,
89
(
6
), p.
068102
.
33.
Baranger
,
M.
,
2000
,
Chaos, Complexity, and Entropy
,
New England Complex Systems Institute
,
Cambridge, MA
.
34.
Solé
,
R. V.
, and
Valverde
,
S.
,
2004
, “
Information Theory of Complex Networks: On Evolution and Architectural Constraints
,”
Complex Networks
,
Springer
,
Berlin, Heidelberg
, pp.
189
207
.
35.
Svítek
,
M.
,
2015
, “
Towards Complex System Theory
,”
Neural Network World
,
25
(
1
), pp.
5
33
.
36.
Cai
,
Y.
,
Qi
,
L.
, and
Wang
,
C.
,
2013
, “
A Data Mining Model of Complex System Based on Improved Cluster Analysis Model and Rough Set Theory
,”
Int. J. Appl. Math. Stat.
,
43
(
13
), pp.
45
51
.
37.
Sacchi
,
L.
,
Dagliati
,
A.
, and
Bellazzi
,
R.
,
2015
, “
Analyzing Complex Patients? Temporal Histories: New Frontiers in Temporal Data Mining
,”
Data Mining in Clinical Medicine
,
Springer
,
New York
, pp.
89
105
.
38.
Sugihara
,
G.
,
May
,
R.
,
Ye
,
H.
,
Hsieh
,
C.-H.
,
Deyle
,
E.
,
Fogarty
,
M.
, and
Munch
,
S.
,
2012
, “
Detecting Causality in Complex Ecosystems
,”
Science
,
338
(
6106
), pp.
496
500
.
39.
Shao
,
Y.-H.
,
Gu
,
G.-F.
,
Jiang
,
Z.-Q.
,
Zhou
,
W.-X.
, and
Sornette
,
D.
,
2012
, “
Comparing the Performance of FA, DFA and DMA Using Different Synthetic Long-Range Correlated Time Series
,”
Sci. Rep.
,
2
, pp.
1
5
.
40.
Martinez
,
G. J.
,
Adamatzky
,
A.
, and
Alonso-Sanz
,
R.
,
2012
, “
Complex Dynamics of Elementary Cellular Automata Emerging From Chaotic Rules
,”
Int. J. Bifurcation Chaos
,
22
(
2
), p.
1250023
.
41.
Cervelle
,
J.
,
Dennunzio
,
A.
, and
Formenti
,
E.
,
2012
, “
Chaotic Behavior of Cellular Automata
,”
Computational Complexity: Theory, Techniques, and Applications
,
Springer
,
New York
, pp.
479
489
.
42.
Holcombe
,
M.
,
Adra
,
S.
,
Bicak
,
M.
,
Chin
,
S.
,
Coakley
,
S.
,
Graham
,
A. I.
,
Green
,
J.
,
Greenough
,
C.
,
Jackson
,
D.
,
Kiran
,
M.
,
MacNeil
,
S.
,
Maleki-Dizaji
,
A.
,
McMinn
,
P.
,
Pogson
,
M.
,
Poole
,
R.
,
Qwarnstrom
,
E.
,
Ratnieks
,
F.
,
Rolfe
,
M. D.
,
Smallwood
,
R.
,
Sun
,
T.
, and
Worth
,
D.
,
2012
, “
Modeling Complex Biological Systems Using an Agent-Based Approach
,”
Integr. Biol.
,
4
(
1
), pp.
53
64
.
43.
Niazi
,
M. A.
, and
Hussain
,
A.
,
2012
,
Cognitive Agent-Based Computing-I: A Unified Framework for Modeling Complex Adaptive Systems Using Agent-Based and Complex Network-Based Methods
, Vol.
1
,
Springer Science & Business Media
,
Dordrecht, Heidelberg
.
44.
Albert
,
R.
, and
Barabási
,
A.-L.
,
2002
, “
Statistical Mechanics of Complex Networks
,”
Rev. Mod. Phys.
,
74
(
1
), pp.
47
97
.
45.
Newman
,
M. E.
,
2003
, “
The Structure and Function of Complex Networks
,”
SIAM Rev.
,
45
(
2
), pp.
167
256
.
46.
Ravasz
,
E.
, and
Barabási
,
A.-L.
,
2003
, “
Hierarchical Organization in Complex Networks
,”
Phys. Rev. E
,
67
(
2
), p.
026112
.
47.
“Emergency Events Database EM-DAT,”
2013
, http://www.emdat.be/
48.
Clauset
,
A.
,
Shalizi
,
C. R.
, and
Newman
,
M. E.
,
2009
, “
Power-Law Distributions in Empirical Data
,”
SIAM Rev.
,
51
(
4
), pp.
661
703
.
49.
Csányi
,
G.
, and
Szendrői
,
B.
,
2004
, “
Structure of a Large Social Network
,”
Phys. Rev. E
,
69
(
3
), p.
036131
.
50.
Pinto
,
C.
,
Lopes
,
A. M.
, and
Machado
,
J. T.
,
2014
, “
Double Power Laws, Fractals and Self-Similarity
,”
Appl. Math. Modell.
,
38
(
15–16
), pp.
4019
4026
.
51.
Jóhannesson
,
G.
,
Björnsson
,
G.
, and
Gudmundsson
,
E. H.
,
2006
, “
Afterglow Light Curves and Broken Power Laws: A Statistical Study
,”
Astrophys. J., Lett.
,
640
(
1
), pp.
L5
L8
.
52.
Khinchin
,
A. I.
,
1957
,
Mathematical Foundations of Information Theory
, Vol.
434
,
Courier Dover Publications
,
New York
.
53.
Machado
,
J. T.
,
2014
, “
Fractional Order Generalized Information
,”
Entropy
,
16
(
4
), pp.
2350
2361
.
54.
Valério
,
D.
,
Trujillo
,
J. J.
,
Rivero
,
M.
,
Machado
,
J. T.
, and
Baleanu
,
D.
,
2013
, “
Fractional Calculus: A Survey of Useful Formulas
,”
Eur. Phys. J.: Spec. Top.
,
222
(
8
), pp.
1827
1846
.
55.
Kullback
,
S.
, and
Leibler
,
R. A.
,
1951
, “
On Information and Sufficiency
,”
Annals Math. Stat.
,
22
(
1
), pp.
79
86
.
56.
Cox
,
T. F.
, and
Cox
,
M. A.
,
2000
,
Multidimensional Scaling
,
CRC Press
,
Boca Raton, FL
.
57.
Machado
,
J. T.
,
2013
, “
Visualizing Non-Linear Control System Performance by Means of Multidimensional Scaling
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041017
.
58.
Kantz
,
H.
, and
Schreiber
,
T.
,
2004
,
Nonlinear Time Series Analysis
, Vol.
7
,
Cambridge University
,
Cambridge, UK
.
59.
Marwan
,
N.
,
Romano
,
M. C.
,
Thiel
,
M.
, and
Kurths
,
J.
,
2007
, “
Recurrence Plots for the Analysis of Complex Systems
,”
Phys. Rep.
,
438
(
5
), pp.
237
329
.
60.
Perc
,
M.
,
Green
,
A. K.
,
Dixon
,
C. J.
, and
Marhl
,
M.
,
2008
, “
Establishing the Stochastic Nature of Intracellular Calcium Oscillations From Experimental Data
,”
Biophys. Chem.
,
132
(
1
), pp.
33
38
.
61.
Kostić
,
S.
,
Vasović
,
N.
,
Perc
,
M.
,
Toljić
,
M.
, and
Nikolić
,
D.
,
2013
, “
Stochastic Nature of Earthquake Ground Motion
,”
Phys. A
,
392
(
18
), pp.
4134
4145
.
62.
Takens
,
F.
,
1981
,
Detecting Strange Attractors in Turbulence
,
Springer
,
Berlin, Heidelberg
.
63.
Kaplan
,
D. T.
, and
Glass
,
L.
,
1992
, “
Direct Test for Determinism in a Time Series
,”
Phys. Rev. Lett.
,
68
(
4
), pp.
427
430
.
64.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Phys. Rev. A
,
33
(
2
), pp.
1134
1140
.
65.
Kennel
,
M. B.
,
Brown
,
R.
, and
Abarbanel
,
H. D.
,
1992
, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A
,
45
(
6
), pp.
3403
3411
.
66.
Theiler
,
J.
,
Eubank
,
S.
,
Longtin
,
A.
,
Galdrikian
,
B.
, and
Farmer
,
J. D.
,
1992
, “
Testing for Nonlinearity in Time Series: The Method of Surrogate Data
,”
Phys. D
,
58
(
1
), pp.
77
94
.
67.
Machado
,
J. T.
,
2012
, “
Fractional Order Modeling of Fractional-Order Holds
,”
Nonlinear Dyn.
,
70
(
1
), pp.
789
796
.
68.
Borg
,
I.
, and
Groenen
,
P. J.
,
2005
, “
Modeling Asymmetric Data
,”
Modern Multidimensional Scaling: Theory and Applications
,
Springer
,
New York
, pp.
495
518
.
You do not currently have access to this content.