This paper presents a new flexible multibody system (MBS) approach for modeling textile systems including roll-drafting sets used in chemical textile machinery. The proposed approach can be used in the analysis of textile materials such as lubricated polyester filament bundles (PFBs), which have uncommon material properties best described by specialized continuum mechanics constitutive models. In this investigation, the absolute nodal coordinate formulation (ANCF) is used to model PFB as a hyperelastic transversely isotropic material. The PFB strain energy density function is decomposed into a fully isotropic component and an orthotropic, transversely isotropic component expressed in terms of five invariants of the right Cauchy–Green deformation tensor. Using this energy decomposition, the second Piola–Kirchhoff stress and the elasticity tensors can also be split into isotropic and transversely isotropic parts. The constitutive equations are used to define the generalized material forces associated with the coordinates of three-dimensional fully parameterized ANCF finite elements (FEs). The proposed approach allows for modeling the dynamic interaction between the rollers and PFB and allows for using spline functions to describe the PFB forward velocity. The paper demonstrates that the textile material constitutive equations and the MBS algorithms can be used effectively to obtain numerical solutions that define the state of strain of the textile material and the relative slip between the rollers and PFB.

References

References
1.
Vose
,
R. W.
,
1944
, “
The Dynamics of Flowing Cord
,”
Text. Res. J.
,
14
(4), pp.
105
112
.
2.
Platt
,
M. M.
,
Klein
,
W. G.
, and
Hamburger
,
W. J.
,
1958
, “
Mechanics of Elastic Performance of Textile Materials: Part XIII—Torque Development in Yarn System: Singles Yarn
,”
Text. Res. J.
,
28
(1), pp.
1
14
.
3.
Platt
,
M. M.
,
Klein
,
W. G.
, and
Hamburger
,
W. J.
,
1959
, “
Mechanics of Elastic Performance of Textile Materials: Part XIV—Some Aspects of Bending Rigidity of Singles Yarns
,”
Text. Res. J.
,
29
(8), pp.
611
627
.
4.
Curiskis
,
J. I.
, and
Carnaby
,
G. A.
,
1985
, “
Continuum Mechanics of the Fiber Bundle
,”
Text. Res. J.
,
55
(6), pp.
334
344
.
5.
Pan
,
N.
, and
Carnaby
,
G. A.
,
1989
, “
Theory of the Shear Deformation of Fibrous Assemblies
,”
Text. Res. J.
,
59
(5), pp.
285
292
.
6.
Pan
,
N.
,
1992
, “
Development of a Constitutive Theory for Short Fiber Yarns: Mechanics of Staple Yarn Without Slippage Effect
,”
Text. Res. J.
,
62
, pp.
749
765
.
7.
Cai
,
Z.
, and
Gutowski
,
T.
,
1992
, “
The 3-D Deformation Behavior of a Lubricated Fiber Bundle
,”
J. Compos. Mater.
,
26
(8), pp.
1207
1237
.
8.
Karbhari
,
V. M.
, and
Simacek
,
P.
,
1996
, “
Notes on the Modeling of Preform Compaction: I—Micromechanics at the Fiber Bundle Level
,”
J. Reinf. Plast. Compos.
,
15
, pp.
86
122
.
9.
van Luijk
,
C. J.
,
Carr
,
A. J.
, and
Carnaby
,
G. A.
,
1984
, “
Finite Element Analysis of Yarns Part I
,”
J. Text. Inst.
,
75
(5), pp.
342
362
.
10.
Djaja
,
R. G.
,
Moss
,
P. J.
,
Carnaby
,
G. A.
, and
Lee
,
D. H.
,
1992
, “
Finite Element Modeling of an Oriented Assembly of Continuous Fibers
,”
Text. Res. J.
,
62
, pp.
445
457
.
11.
Zhao
,
L.
,
Mantell
,
S. C.
,
Cohen
,
D.
, and
McPeak
,
R.
,
2001
, “
Finite Element Modeling of the Filament Winding Process
,”
Compos. Struct.
,
52
(3–4), pp.
499
510
.
12.
Huh
,
Y.
, and
Kim
,
J. S.
,
2004
, “
Modeling the Dynamic Behavior of the Fiber Bundle in a Roll-Drafting Process
,”
Text. Res. J.
,
74
(10), pp.
872
878
.
13.
Huh
,
Y.
, and
Kim
,
J. S.
,
2006
, “
Effects of Material Parameters and Process Conditions on the Roll-Drafting Dynamics
,”
Fibers Polym.
,
7
(
4
), pp.
424
431
.
14.
Kim
,
J. S.
,
Cherif
,
C.
, and
Huh
,
Y.
,
2008
, “
Numerical Analysis of Fiber Fleece Behavior in Roller Drafting in a Transient State
,”
Text. Res. J.
,
78
(9), pp.
796
805
.
15.
Bechtel
,
S. E.
,
Vohra
,
S.
, and
Jacob
,
K. I.
,
2002
, “
Stretching and Slipping of Fibers in Isothermal Draw Processes
,”
Text. Res. J.
,
72
(9), pp.
769
776
.
16.
Mbarek
,
S.
,
Jaziri
,
M.
,
Carrot
,
C.
, and
Chalamet
,
Y.
,
2012
, “
Thermo Mechanical Properties of a Polymer Blend: Investigation of a Third Phase
,”
Mech. Mater.
,
52
, pp.
78
86
.
17.
Dyke
,
P. V.
, and
Hedgepeth
,
J. M.
,
1969
, “
Stress Concentrations From Single-Filament Failures in Composite Materials
,”
Text. Res. J.
,
39
, pp.
618
626
.
18.
Jones
,
N.
,
1974
, “
Elastic–Plastic and Viscoelastic Behavior of a Continuous Filament Yarn
,”
Int. J. Mech. Sci.
,
16
(9), pp.
679
687
.
19.
McLaughlin
,
P. V.
, Jr.
,
1972
, “
Plastic Limit Behavior and Failure of Filament Reinforced Materials
,”
Int. J. Solids Struct.
,
8
(11), pp.
1299
1318
.
20.
Maqueda
,
L. G.
, and
Shabana
,
A. A.
,
2007
, “
Poisson Modes and General Nonlinear Constitutive Models in the Large Displacement Analysis of Beams
,”
Multibody Syst. Dyn.
,
18
(3), pp.
375
396
.
21.
Jung
,
J. H.
, and
Kang
,
T. J.
,
2005
, “
Large Deflection Analysis of Fibers With Nonlinear Elastic Properties
,”
Text. Res. J.
,
75
(10), pp.
715
723
.
22.
Bonet
,
J.
, and
Burton
,
A. J.
,
1997
, “
A Simple Orthotropic, Transversely Isotropic Hyperelastic Constitutive Equations for Large Strain Computations
,”
Comput. Methods Appl. Mech. Eng.
,
162
(1–4), pp.
151
164
.
23.
Limbert
,
G.
, and
Middleton
,
J.
,
2004
, “
A Transversely Isotropic Viscohyperelastic Material Application to the Modeling of Biological Soft Connective Tissues
,”
Int. J. Solid Struct.
,
41
(15), pp.
4237
4260
.
24.
Kulkarni
,
S. G.
,
Gao
,
X.
,
Horner
,
S. E.
,
Mortlock
,
R. F.
, and
Zheng
,
J. Q.
, “
A Transversely Isotropic Visco-Hyperelastic Constitutive Model for Soft Tissues
,”
Math. Mech. Solids
(in press).
25.
Christensen
,
R. M.
,
1979
,
Mechanics of Composite Materials
,
Wiley
, New York.
26.
Spencer
,
A. J. M.
,
1971
,
Theory of Invariants, in Continuum Physics: Mathematics
, Vol.
1
,
A. C.
Eringen
, ed.,
Academic Press
,
New York
.
27.
Kao
,
P. H.
,
Lammers
,
S. R.
,
Hunter
,
K.
,
Stenmark
,
K. R.
,
Shandas
,
R.
, and
Qi
,
H. J.
,
2010
, “
Constitutive Modeling of Anisotropic Finite-Deformation Hyperelastic Behaviors of Soft Materials Reinforced by Tortuous Fibers
,”
Int. J. Struct. Changes Solids Mech.
,
2
(
1
), pp.
19
29
.
28.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimension Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des
,
123
(
4
), pp.
606
613
.
29.
Shabana
,
A. A.
,
2012
,
Computational Continuum Mechanics
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
30.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformations
,
Dover Publications
,
New York
.
31.
Dufva
,
K.
,
Kerkkänen
,
K.
,
Maqueda
,
L. G.
, and
Shabana
,
A. A.
,
2007
, “
Nonlinear Dynamics of Three-Dimensional Belt Drives Using the Finite-Element Method
,”
Nonlinear Dyn.
,
48
(4), pp.
449
466
.
32.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
,
4th ed.
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.