This paper is concerned with the asymptotic behavior of the solutions u(x, t) of the Swift–Hohenberg equation with quintic polynomial on the cylindrical domain Q=(0,L)×R+. With the control parameter α in the Swift–Hohenberg equation and the length L of the domain regarded as bifurcation parameters, branches of nontrivial solutions bifurcating from the trivial solution at certain points are shown. Local behavior of these branches is also investigated. With the help of a center manifold analysis, two types of structures in the bifurcation diagrams are presented when the bifurcation points are close, and their stabilities are analyzed.

References

References
1.
Swift
,
J. B.
, and
Hohenberg
,
P. C.
,
1977
, “
Hydrodynamic Fluctuations at the Convective Instability
,”
Phys. Rev. A
,
15
(
1
), pp.
319
328
.
2.
Budd
,
C. J.
, and
Kuske
,
R.
,
2005
, “
Localized Periodic Patterns for the Non-Symmetric Generalized Swift–Hohenberg Equation
,”
Physica D
,
208
(1–2), pp.
73
95
.
3.
Collet
,
P.
, and
Eckmann
,
J. P.
,
1990
,
Instabilities and Fronts in Extended Systems
(Princeton Series in Physics),
Princeton University
,
Princeton, NJ
.
4.
McLeod
,
J. B.
, and
Serrin
,
J.
,
1968
, “
The Existence of Similar Solutions for Some Laminar Boundary Layer Problems
,”
Arch. Ration. Mech. Anal.
,
31
(
4
), pp.
288
303
.
5.
Peletier
,
L. A.
, and
Rottschäfer
,
V.
,
2003
, “
Large Time Behaviour of Solutions of the Swift–Hohenberg Equation
,”
C.R. Math. Acad. Sci. Paris
,
336
(
3
), pp.
225
230
.
6.
Peletier
,
L. A.
, and
Rottschäfer
,
V.
,
2004
, “
Pattern Selection of Solutions of the Swift–Hohenberg Equation
,”
Physica D
,
194
(1–2), pp.
95
126
.
7.
Peletier
,
L. A.
, and
Williams
,
J. F.
,
2007
, “
Some Canonical Bifurcations in the Swift–Hohenberg Equation
,”
SIAM J. Appl. Dyn. Syst.
,
6
(
1
), pp.
208
235
.
8.
Sakaguchi
,
H.
, and
Malomed
,
B.
,
1998
, “
Grain Boundaries in Two-Dimensional Traveling-Wave Patterns
,”
Physica D
,
118
(3–4), pp.
250
260
.
9.
Day
,
S.
,
Hiraoka
,
Y.
,
Mischaikow
,
K.
, and
Ogawa
,
T.
,
2005
, “
Rigorous Numerics for Global Dynamics: A Study of the Swift–Hohenberg Equation
,”
SIAM J. Appl. Dyn. Syst.
,
4
(
1
), pp.
1
31
.
10.
Lloyd
,
D. J. B.
,
Sandstede
,
B.
,
Avitabile
,
D.
, and
Champneys
,
A. R.
,
2008
, “
Localized Hexagon Patterns of the Planar Swift–Hohenberg Equation
,”
SIAM J. Appl. Dyn. Syst.
,
7
(
3
), pp.
1049
1100
.
11.
Dawes
,
J. H. P.
,
2008
, “
Localized Pattern Formation With a Large-Scale Mode: Slanted Snaking
,”
SIAM J. Appl. Dyn. Syst.
,
7
(
1
), pp.
186
206
.
12.
Van Den Berg
,
J. B.
, and
Lessard
,
J. P.
,
2008
, “
Chaotic Braided Solutions Via Rigorous Numerics: Chaos in the Swift–Hohenberg Equation
,”
SIAM J. Appl. Dyn. Syst.
,
7
(
3
), pp.
988
1031
.
13.
Ghazaryan
,
A.
, and
Sandstede
,
B.
,
2007
, “
Nonlinear Convective Instability of Turing-Unstable Fronts Near Onset: A Case Study
,”
SIAM J. Appl. Dyn. Syst.
,
6
(
2
), pp.
319
347
.
14.
McCalla
,
S. G.
, and
Sandstede
,
B.
,
2013
, “
Spots in the Swift–Hohenberg Equation
,”
SIAM J. Appl. Dyn. Syst.
,
12
(
2
), pp.
831
877
.
15.
Braaksma
,
B.
,
Iooss
,
G.
, and
Stolovitch
,
L.
,
2013
, “
Existence of Quasipattern Solutions of the Swift–Hohenberg Equation
,”
Arch. Ration. Mech. Anal.
,
209
(
1
), pp.
255
285
.
16.
Xiao
,
Q. K.
, and
Gao
,
H. J.
,
2009
, “
Bifurcation Analysis of the Swift–Hohenberg Equation With Quintic Nonlinearity
,”
Int. J. Bifurcation Chaos
,
19
(
9
), pp.
2927
2937
.
17.
Hale
,
J. K.
,
1988
, “
Asymptotic Behavior of Dissipative Systems
,”
Mathematical Surveys and Monographs
, Vol.
25
,
AMS
,
Providence, RI
.
You do not currently have access to this content.