Using Lie group of transformations, here we consider the problem of finding similarity solutions to the system of partial differential equations (PDEs) governing one-dimensional unsteady motion of an ideal gas in the presence of radiative cooling and idealized azimuthal magnetic field. The similarity solutions are investigated behind a cylindrical shock wave which is produced as a result of a sudden explosion or driven out by an expanding piston. The shock is assumed to be strong and propagates into a medium which is at rest, with nonuniform density. The total energy of the wave is assumed to be time dependent obeying a power law. Indeed, with the use of the similarity solution, the problem is transformed into a system of ordinary differential equations (ODEs), which in general is nonlinear; in some cases, it is possible to solve these ODEs to determine some special exact solutions.

References

References
1.
Baker
,
W. E.
,
1973
,
Explosions in Air
,
University of Texas Press
,
Austin, TX/London
.
2.
Brode
,
H. L.
,
1955
, “
Numerical Solutions of Spherical Blast Waves
,”
J. Appl. Phys.
,
26
(
6
), pp.
766
775
.
3.
Brode
,
H. L.
,
1959
, “
Blast Waves From a Spherical Charge
,”
Phys. Fluids
,
2
(
2
), pp.
217
229
.
4.
Sedov
,
L. I.
,
1946
, “
Air Motion in a Strong Explosion
,”
Dokl. Akad. Nauk. SSSR
,
52
(
1
), pp.
7
20
.
5.
Taylor
,
G.
,
1950
, “
The Formation of a Blast Wave by a Very Intense Explosion
,”
Proc. R. Soc. London A
,
201
(
1065
), pp.
159
174
.
6.
Hunter
,
C.
,
1963
, “
Similarity Solutions for the Flow Into a Cavity
,”
J. Fluid Mech.
,
15
(
2
), pp.
289
305
.
7.
Guderley
,
G.
,
1942
, “
Starke Kugelige und Zylindrische Verdichtungsstosse in der Nahe des Kugelmittelpunktes bzw der Zylinderachse
,”
Luftfahrtforschung
,
19
, pp.
302
312
.
8.
Greifinger
,
C.
, and
Cole
,
J. D.
,
1962
, “
Similarity Solutions for Cylindrical Magnetohydrodynamic Blast Waves
,”
Phys. Fluids
,
5
(
12
), pp.
1597
1607
.
9.
Van Dyke
,
M.
, and
Guttmann
,
A. J.
,
1982
, “
The Converging Shock Wave From a Spherical or Cylindrical Piston
,”
J. Fluid Mech.
,
120
, pp.
451
462
.
10.
Sharma
,
V. D.
, and
Radha
,
Ch.
,
1994
, “
On One-Dimensional Planar and Non-Planar Shock Waves in a Relaxing Gas
,”
Phys. Fluids
,
6
(
6
), pp.
2177
2190
.
11.
Sharma
,
V. D.
, and
Radha
,
Ch.
,
1995
, “
Similarity Solutions for Converging Shock in a Relaxing Gas
,”
Int. J. Eng. Sci.
,
33
(
4
), pp.
535
553
.
12.
Madhumita
,
G.
, and
Sharma
,
V. D.
,
2003
, “
Propagation of Strong Converging Shock Waves in a Gas of Variable Density
,”
J. Eng. Math.
,
46
(
1
), pp.
55
68
.
13.
Pandey
,
M.
,
Sharma
,
V. D.
, and
Radha
,
Ch.
,
2008
, “
Symmetry Analysis and Exact Solution of Magnetogasdynamics Equations
,”
Q. J. Mech. Appl. Math.
,
61
(
3
), pp.
291
310
.
14.
Sharma
,
V. D.
, and
Arora
,
R.
,
2005
, “
Similarity Solutions for Strong Shocks in an Ideal Gas
,”
Stud. Appl. Math.
,
114
(
4
), pp.
375
394
.
15.
Arora
,
R.
,
Tomar
,
A.
, and
Singh
,
V. P.
,
2012
, “
Similarity Solutions for Strong Shocks in a Non-Ideal Gas
,”
Math. Model. Anal.
,
17
(
3
), pp.
351
365
.
16.
Arora
,
R.
,
Siddiqui
,
M. J.
, and
Singh
,
V. P.
,
2013
, “
Similarity Method for Imploding Strong Shocks in a Non-Ideal Relaxing Gas
,”
Int. J. Nonlinear Mech.
,
57
, pp.
1
9
.
17.
Elliott
,
L. A.
,
1960
, “
Similarity Methods in Radiation and Hydrodynamics
,”
Proc. R. Soc. London A
,
258
(
1294
), pp.
287
301
.
18.
Wang
,
K. C.
,
1964
, “
The ‘Piston Problem’ With Thermal Radiation
,”
J. Fluid Mech.
,
20
(
3
), pp.
447
455
.
19.
Helliwell
,
J. B.
,
1969
, “
Self-Similar Piston Problem With Radiative Heat Transfer
,”
J. Fluid Mech.
,
37
(
3
), pp.
497
512
.
20.
Summers
,
D.
,
1975
, “
An Idealised Model of a Magnetohydrodynamic Spherical Blast Wave Applied to a Flare Produced Shock in the Solar Wind
,”
Astron. Astrophys.
,
45
(
1
), pp.
151
158
.
21.
Rosenau
,
P.
, and
Frankenthal
,
S.
,
1976
, “
Equatorial Propagation of Axisymmetric Magnetohydrodynamic Shocks
,”
Phys. Fluids
,
19
(
12
), pp.
1889
1899
.
22.
Singh
,
J. B.
, and
Srivastava
,
R. N. L.
,
1982
, “
Self-Similar Flows Behind Shock Wave With Increasing Energy in Magnetogasdynamics, I
,”
Astrophys. Space Sci.
,
85
(
1
), pp.
427
435
.
23.
Korobeinikov
,
V. P.
,
1976
,
Problems in the Theory of Point Explosion in Gases
,
American Mathematical Society
,
Providence, RI
.
24.
Shang
,
J. S.
,
2001
, “
Recent Research in Magneto-Aerodynamics
,”
Prog. Aerosp. Sci.
,
37
(
1
), pp.
1
20
.
25.
Lock
,
R. M.
, and
Mestel
,
A. J.
,
2008
, “
Annular Self-Similar Solution in Ideal Gas Magnetogasdynamics
,”
J. Fluid Mech.
,
74
(
4
), pp.
531
554
.
26.
Ashraf
,
S.
, and
Sachdev
,
P. L.
,
1970
, “
An Exact Similarity Solution in Radiation Gasdynamics
,”
Proc. Indian Acad. Sci. A
,
71
(
6
), pp.
275
281
.
27.
Verma
,
B. G.
, and
Vishwakarma
,
J. P.
,
1978
, “
An Exact Similarity Solution for a Spherical Shock Wave in a Magneto-Radiative Gas
,”
Astrophys. Space Sci.
,
58
(
1
), pp.
139
147
.
28.
Olver
,
P. J.
,
1986
,
Applications of Lie Groups to Differential Equations
,
Springer
,
New York
.
29.
Bluman
,
G. W.
, and
Kumei
,
S.
,
1989
,
Symmetries and Differential Equations
,
Springer
,
New York
.
30.
Singh
,
J. B.
,
1983
, “
Equatorial Propagation of Axisymmetric Magnetogasdynamic Shocks With Thermal Radiation, I
,”
Astrophys. Space Sci.
,
96
(
1
), pp.
153
158
.
31.
Singh
,
J. B.
, and
Vishwakarma
,
P. R.
,
1983
, “
A Self-Similar Flow Behind a Spherical Shock Wave With Thermal Radiation, I
,”
Astrophys. Space Sci.
,
93
(
2
), pp.
261
265
.
32.
Jena
,
J.
,
2012
, “
Self-Similar Solutions in a Plasma With Axial Magnetic Field (θ-Pinch)
,”
Meccanica
,
47
(
5
), pp.
1209
1215
.
33.
Vishwakarma
,
J. P.
, and
Nath
,
G.
,
2009
, “
A Self-Similar Solution of a Shock Propagation in a Mixture of a Non-Ideal Gas and Small Solid Particles
,”
Meccanica
,
44
(
3
), pp.
239
254
.
This content is only available via PDF.
You do not currently have access to this content.