In this paper, the algorithm, Euler scheme-the modified velocity-verlet algorithm (ES-MVVA) based on dissipative particle dynamics (DPD) method, is applied to simulate a two-dimensional ferromagnetic colloidal suspension. The very desirable aggregate structures of magnetic particles are obtained by using the above-mentioned algorithm, which are in qualitatively good agreement with those in the literature obtained by other simulation methods for different magnetic particle–particle interaction strengths. At the same time, the radial distribution functions of magnetic particles and the mean equilibrium temperatures of the system are also calculated. Next, the mean equilibrium velocities of magnetic and dissipative particles are calculated, by comparing the results obtained by ES-MVVA with those obtained by other algorithm for different time step sizes, it shows the validity and good accuracy of the present algorithm. So, the DPD-based algorithm presented in this paper is a powerful tool for simulation of magnetic colloidal suspensions.

References

1.
Hoogerbrugge
,
P. J.
, and
Koelman
,
J. M. V. A.
,
1992
, “
Simulating Microscopic Hydrodynamic Phenomena With Dissipative Particle Dynamics
,”
Europhys. Lett.
,
19
(
3
), pp.
155
160
.
2.
Rapaport
,
D. C.
, and
Clementi
,
E.
,
1986
, “
Eddy Formation in Obstructed Fluid Flow: A Molecular-Dynamics Study
,”
Phys. Rev. Lett.
,
57
(
6
), pp.
695
698
.
3.
Frisch
,
U.
,
Hasslacher
,
B.
, and
Pomeau
,
Y.
,
1986
, “
Lattice-Gas Automata for the Navier–Stokes Equation
,”
Phys. Rev. Lett.
,
56
(
14
), pp.
1505
1508
.
4.
Español
,
P.
, and
Warren
,
P.
,
1995
, “
Statistical Mechanics of Dissipative Particle Dynamics
,”
Europhys. Lett.
,
30
(
4
), pp.
191
196
.
5.
Kong
,
Y.
,
Manke
,
C. W.
,
Madden
,
W. G.
, and
Schlijper
,
A. G.
,
1994
, “
Simulation of a Confined Polymer in Solution Using the Dissipative Particle Dynamics Method
,”
Int. J. Thermophys.
,
15
(
6
), pp.
1093
1101
.
6.
Schlijper
,
A. G.
,
Hoogerbrugge
,
P. J.
, and
Manke
,
C. W.
,
1995
, “
Computer Simulation of Dilute Polymer Solution With the Dissipative Particle Dynamics Method
,”
J. Rheol.
,
39
(
3
), pp.
567
579
.
7.
Kong
,
Y.
,
Manke
,
C. W.
,
Madden
,
W. G.
, and
Schlijper
,
A. G.
,
1997
, “
Effect of Solvent Quality on the Conformation and Relaxation of Polymers Via Dissipative Particle Dynamics
,”
J. Chem. Phys.
,
107
(2), pp.
592
602
.
8.
Jiang
,
W.
,
Huang
,
J.
,
Yongmei
,
W.
, and
Laradji
,
M.
,
2007
, “
Hydrodynamic Interaction in Polymer Solutions Simulated With Dissipative Particle Dynamics
,”
J. Chem. Phys.
,
126
(
4
), p.
044901
.
9.
Nikunen
,
P.
,
Vattulainen
,
I.
, and
Karttunen
,
M.
,
2007
, “
Reptational Dynamics in Dissipative Particle Dynamics Simulations of Polymer Melts
,”
Phys. Rev. E
,
75
(
3
), p.
036713
.
10.
Coveney
,
P. V.
, and
Novik
,
K. E.
,
1996
, “
Computer Simulations of Domain Growth and Phase Separation in Two-Dimensional Binary Immiscible Fluids Using Dissipative Particle Dynamics
,”
Phys. Rev. E
,
54
(5), pp.
5134
5141
.
11.
Novik
,
K. E.
, and
Coveney
,
P. V.
,
1997
, “
Using Dissipative Particle Dynamics to Model Binary Immiscible Fluids
,”
Int. J. Mod. Phys. C
,
8
(4), pp.
909
918
.
12.
Coveney
,
P. V.
, and
Espanol
,
P.
,
1997
, “
Dissipative Particle Dynamics for Interacting Multi-Component Systems
,”
J. Phys. A
,
30
(
3
), pp.
779
784
.
13.
Koelman
,
J. M. V. A.
, and
Hoogerbrugge
,
P. J.
,
1993
, “
Dynamic Simulation of Hard-Sphere Suspensions Under Steady Shear
,”
Europhys. Lett.
,
21
(
3
), pp.
363
368
.
14.
Boek
,
E. S.
,
Coveney
,
P. V.
,
Lekkerkerker
,
H. N. W.
, and
van der Schoot
,
P.
,
1997
, “
Simulating the Rheology of Dense Colloidal Suspensions Using Dissipative Particle Dynamics
,”
Phys. Rev. E
,
55
(
3
), pp.
3124
3133
.
15.
Boek
,
E. S.
,
Coveney
,
P. V.
, and
Lekkerkerker
,
H. N. W.
,
1996
, “
Computer Simulation of Rheological Phenomena in Dense Colloidal Suspensions With Dissipative Particle Dynamics
,”
J. Phys. Condens. Matter
,
8
(47), pp.
9509
9512
.
16.
Chen
,
S.
,
Phan-Thien
,
N.
,
Khoo
,
B. C.
, and
Fan
,
X.-J.
,
2006
, “
Flow Around Spheres by Dissipative Particle Dynamics
,”
Phys. Fluids
,
18
(
10
), p.
103605
.
17.
Pan
,
W. X.
,
Caswell
,
B.
, and
Karniadakis
,
G. E.
,
2010
, “
Rheology, Microstructure and Migration in Brownian Colloidal Suspensions
,”
Langmuir
,
26
(
1
), pp.
133
142
.
18.
Fan
,
X. J.
,
Phan-Thien
,
N.
,
Yong
,
N. T.
,
Wu
,
X. H.
, and
Xu
,
D.
,
2003
, “
Microchannel Flow of a Macromolecular Suspension
,”
Phys. Fluids
,
15
(
1
), pp.
11
21
.
19.
Fan
,
X. J.
,
Phan-Thien
,
N.
,
Chen
,
S.
,
Wu
,
X. H.
, and
Ng
,
T. Y.
,
2006
, “
Simulating Flow of DNA Suspension Using Dissipative Particle Dynamics
,”
Phys. Fluids
,
18
(
6
), p.
063102
.
20.
Satoh
,
A.
,
2001
, “
Rheological Properties and Orientational Distributions of Dilute Ferromagnetic Spherocylinder Particle Dispersions
,”
J. Colloid Interface Sci.
,
234
(
2
), pp.
425
433
.
21.
Aoshima
,
M.
,
Satoh
,
A.
,
Chantrell
,
R. W.
, and
Coverdale
,
G. N.
,
2002
, “
Rheological Properties and Orientational Distributions of Dilute Ferromagnetic Spherocylinder Particle Dispersions
,”
J. Colloid Interface Sci.
,
253
(
2
), pp.
455
464
.
22.
Satoh
,
A.
,
2003
, “
Rheological Properties and Particle Behaviors of a Nondilute Colloidal Dispersion Composed of Ferromagnetic Spherocylinder Particles Subjected to a Simple Shear Flow (Analysis by Means of Mean-Field Approximation)
,”
J. Colloid Interface Sci.
,
262
(
1
), pp.
263
273
.
23.
Aoshima
,
M.
, and
Satoh
,
A.
,
2004
, “
Two-Dimensional Monte Carlo Simulations of a Polydisperse Colloidal Dispersion Composed of Ferromagnetic Particles for the Case of No External Magnetic Field
,”
J. Colloid Interface Sci.
,
280
(
1
), pp.
83
90
.
24.
Satoh
,
A.
,
2005
, “
Influence of Magnetic Interactions Between Clusters on Particle Orientational Characteristics and Viscosity of a Colloidal Dispersion Composed of Ferromagnetic Spherocylinder Particles: Analysis by Means of Mean Field Approximation for a Simple Shear Flow
,”
J. Colloid Interface Sci.
,
289
(
1
), pp.
276
285
.
25.
Satoh
,
A.
,
Ozaki
,
M.
,
Ishikawa
,
T.
, and
Majima
,
T.
,
2005
, “
Transport Coefficients and Orientational Distributions of Rodlike Particles With Magnetic Moment Normal to the Particle Axis Under Circumstances of a Simple Shear Flow
,”
J. Colloid Interface Sci.
,
292
(
2
), pp.
581
590
.
26.
Satoh
,
A.
, and
Chantrell
,
R. W.
,
2006
, “
Application of the Dissipative Particle Dynamics Method to Magnetic Colloidal Dispersions
,”
Mol. Phys.
,
104
(
20–21
), pp.
3287
3302
.
27.
Odenbach
,
S.
, ed.,
2009
,
Colloidal Magnetic Fluids: Basic, Development and Application of Ferrofluids
,
Springer
,
Berlin, Germany
.
28.
Pivkin
,
I. V.
,
Caswell
,
B.
, and
Karniadakis
,
G. E.
,
2011
, “
Dissipative Particle Dynamics
,”
Reviews in Computational Chemistry
, Vol.
27
,
K. B.
Lipkowitz
, ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, Chap. 2.
29.
Groot
,
R. D.
, and
Warren
,
P. B.
,
1997
, “
Dissipative Particle Dynamics: Bridging the Gap Between Atomistic and Mesoscopic Simulation
,”
J. Chem. Phys.
,
107
(11), pp.
4423
4435
.
30.
Satoh
,
A.
,
Chantrell
,
R. W.
,
Kamiyama
,
S. I.
, and
Coverdale
,
G. N.
,
1996
, “
Two-Dimensional Monte Carlo Simulations to Capture Thick Chainlike Clusters of Ferromagnetic Particles in Colloidal Dispersions
,”
J. Colloid Interface Sci.
,
178
(
2
), pp.
620
627
.
31.
Satoh
,
A.
,
Chantrell
,
R. W.
, and
Coverdale
,
G. N.
,
1999
, “
Brownian Dynamics Simulations of Ferromagnetic Colloidal Dispersions in a Simple Shear Flow
,”
J. Colloid Interface Sci.
,
209
(
1
), pp.
44
59
.
32.
Satoh
,
A.
,
2014
, “
On Aggregate Structures in a Rod-Like Haematite Particle Suspension by Means of Brownian Dynamics Simulations
,”
Mol. Phys.
,
112
(
16
), pp.
2122
2137
.
You do not currently have access to this content.