Because of the inherent nonlinearities involving the behavior of carbon nanotubes (CNTs) when excited by electrostatic forces, modeling and simulating their behavior are challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This work presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of CNTs when actuated by large electrostatic forces. We study by expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler–Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.

References

1.
Pelesko
,
J. A.
, and
Bernstein
,
D. H.
,
2003
,
Modeling MEMS and NEMS
,
Chapman & Hall/CRC Press
, Boca Raton, FL.
2.
Gibson
,
R. F.
,
Ayorinde
,
E. O.
, and
Wen
,
Y. F.
,
2008
, “
Vibrations of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
,
67
(
1
), pp.
1
28
.
3.
Rhoads
,
J. F.
,
Shaw
,
S. W.
, and
Turner
,
K. L.
,
2010
, “
Nonlinear Dynamics and Its Applications in Micro- and Nanoresonators
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
3
), p.
034001
.
4.
Lifshitz
,
R.
, and
Cross
,
M. C.
,
2008
, “
Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators
,”
Review of Nonlinear Dynamics and Complexity
,
H. G.
Schuster
, ed., Wiley, New York, pp.
1
52
.
5.
Craighead
,
H. G.
,
2000
, “
Nanoelectromechanical Systems
,”
Science
,
290
(
5496
), pp.
1532
1535
.
6.
Pantano
,
A.
,
Boyce
,
M. C.
, and
Parks
,
D. M.
,
2003
, “
Nonlinear Structural Mechanics Base Modeling of Carbon Nanotube Deformation
,”
Phys. Rev. Lett.
,
91
(
14
), p.
145504
.
7.
Postma
,
H.
,
Kozinsky
,
I.
,
Husain
,
A.
, and
Roukes
,
M.
,
2005
, “
Dynamic Range of Nanotube- and Nanowire-Based Electromechanical Systems
,”
Appl. Phys. Lett.
,
86
(
22
), p.
223105
.
8.
Dequesnes
,
M.
,
Tang
,
S.
, and
Aluru
,
N. R.
,
2004
, “
Static and Dynamic Analysis of Carbon Nanotube-Based Switches
,”
ASME J. Eng. Mater. Technol.
,
126
(
3
), pp.
230
237
.
9.
Conley
,
W. G.
,
Raman
,
A.
,
Krousgrill
,
C. M.
, and
Mohammadi
,
S.
,
2008
, “
Nonlinear and Nonplanar Dynamics of Suspended Nanotube and Nanowire Resonators
,”
Nano Lett.
,
8
(
6
), pp.
1590
1595
.
10.
Gibson
,
R. F.
,
Ayorinde
,
E. O.
, and
Wen
,
Y. F.
,
2007
, “
Vibrations of Carbon nanotubes and Their Composites: A Review
,”
J. Comput Sci. Technol.
,
67
(
1
), pp.
1
28
.
11.
Sazonova
,
V.
,
Yaish
,
Y.
,
Üstünel
,
H.
,
Roundy
,
D.
,
Arias
,
T. A.
, and
McEuen
,
P. L.
,
2004
, “
A Tunable Carbon Nanotubes Electromechanical Oscillator
,”
Nature
,
431
(
7006
), pp.
284
287
.
12.
Sazonova
,
V. A.
,
2006
, “
A Tunable Carbon Nanotube Resonator
,” Ph.D. thesis, Department of Physics, Cornell University, Ithaca, NY.
13.
Üstünel
,
H.
,
Roundy
,
D.
, and
Arias
,
T. A.
,
2005
, “
Modeling a Suspended Nanotube Oscillator
,”
Nano Lett.
,
5
(
3
), pp.
523
526
.
14.
Garcia-Sanchez
,
D.
,
San Paulo
,
A.
,
Esplandiu
,
M. J.
,
PerezMurano
,
F.
,
Forrò
,
L.
,
Aguasca
,
A.
, and
Bachtold
,
A.
,
2007
, “
Mechanical Detection of Carbon Nanotube Resonator Vibrations
,”
Phys. Rev. Lett.
,
99
(
8
), p.
085501
.
15.
Mayoof
,
F. N.
, and
Hawwa
,
M. A.
,
2009
, “
Chaotic Behavior of a Curved Carbon Nanotube Under Harmonic Excitation
,”
Chaos Solitons Fractals
,
42
(
3
), pp.
1860
1867
.
16.
Ke
,
C. H.
,
Espinosa
,
H. D.
, and
Pugno
,
N.
,
2005
, “
Numerical Analysis of Nanotube-Based NEMS Devices—Part II: Role of Finite Kinematics, Stretching and Charge Concentrations
,”
ASME J. Appl. Mech.
,
72
(
5
), pp.
726
731
.
17.
Yakobson
,
B.
,
Brabec
,
C.
, and
Bernholc
,
J.
,
1996
, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
,
76
(
14
), pp.
2511
2514
.
18.
Harik
,
V. M.
,
2001
, “
Ranges of Applicability of the Continuum Beam Model in the Mechanics of Carbon Nanotubes and Nanorods
,”
Solid State Commun.
,
120
(
7–8
), pp.
331
335
.
19.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2003
, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
,
12
(
5
), pp.
672
680
.
20.
Wu
,
C. C.
, and
Zhong
,
Z.
,
2011
, “
Capacitive Spring Softening in Single-Salled Carbon Nanotube Nanoelectromechanical Resonators
,”
Nano Lett.
,
11
(
4
), pp.
1448
1451
.
21.
Jin
,
L.
,
Mei
,
J.
, and
Li
,
L.
,
2015
, “
Nonlinear Dynamics of a Doubly Clamped Carbon Nanotube Resonator Considering Surface Stress
,”
RSC Adv.
,
5
(
10
), pp.
7215
7221
.
22.
Castellanos-Gomez
,
A.
,
Meerwaldt
,
H. B.
,
Venstra
,
W. J.
,
van der Zant
,
H. S. J.
, and
Steele
,
G. A.
,
2012
, “
Strong and Tunable Mode Coupling in Carbon Nanotube Resonators
,”
Phys. Rev. B
,
86
(
4
), p.
041402(R)
.
23.
Ouakad
,
H.
, and
Younis
,
M. I.
,
2010
, “
Nonlinear Dynamics of Electrically Actuated Carbon Nanotube Resonators
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
011009
.
24.
Ouakad
,
H.
, and
Younis
,
M. I.
,
2011
, “
Natural Frequencies and Mode Shapes of Initially Curved Carbon Nanotube Resonators under Electric Excitation
,”
J. Sound Vib.
,
330
(
13
), pp.
3182
3195
.
25.
Ouakad
,
H.
, and
Younis
,
M. I.
,
2012
, “
Dynamic Response of Slacked Carbon Nanotube Resonators
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1419
1436
.
26.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics
,
Springer
, New York.
27.
Elshurafa
,
A. M.
,
Khirallah
,
K.
, and
Tawfil
,
H. H.
,
2011
, “
Nonlinear Dynamics of Spring Softening and Hardening in Folded-MEMS Comb Drive Resonators
,”
J. Microelectromech. Syst.
,
20
(
4
), pp.
943
958
.
28.
Poon
,
W. Y.
,
Ng
,
C. F.
, and
Lee
,
Y. Y.
,
2002
, “
Dynamic Stability of Curved Beam Under Sinusoidal Loading
,”
J. Aerosp. Eng.
,
216
(
4
), pp.
209
217
.
29.
Ruzziconi
,
L.
,
Bataineh
,
A. M.
,
Younis
,
M. I.
,
Cui
,
W.
, and
Lenci
,
S.
,
2013
, “
Nonlinear Dynamics of an Electrically Actuated Imperfect Microbeam Resonator: Experimental Investigation and Reduced-Order Modeling
,”
J. Micromech. Microeng.
,
23
(
7
), p.
075012
.
30.
Ruzziconi
,
L.
,
Younis
,
M. I.
, and
Lenci
,
S.
,
2013
, “
Multistability in an Electrically Actuated Carbon Nanotube: A Dynamical Integrity Perspective
,”
Nonlinear Dyn.
,
74
(
3
), pp.
533
549
.
You do not currently have access to this content.