We have developed a simple mathematical model of the human motor control system, which can generate periodic motions in a musculoskeletal arm. Our motor control model is based on the idea of a central pattern generator (CPG), in which a small population of neurons generates periodic limb motion. The CPG model produces the motion based on a simple descending command—the desired frequency of motion. Furthermore, the CPG model is implemented by a spiking neuron model; as a result of the stochasticity in the neuron activities, the motion exhibits a certain level of variation similar to real human motion. Finally, because of the simple structure of the CPG model, it can generate the sophisticated muscle excitation commands much faster than optimization-based methods.

References

References
1.
Ijspeert
,
A. J.
,
2008
, “
Central Pattern Generators for Locomotion Control in Animals and Robots: A Review
,”
Neural Networks
,
21
(
4
), pp.
642
653
.
2.
MacKay-Lyons
,
M.
,
2002
, “
Central Pattern Generation of Locomotion: A Review of the Evidence
,”
Phys. Ther.
,
82
(
1
), pp.
69
83
.
3.
Brown
,
T.
,
1914
, “
On the Nature of the Fundamental Activity of the Nervous Centres; Together With an Analysis of the Conditioning of Rhythmic Activity in Progression, and a Theory of the Evolution of Function in the Nervous System
,”
J. Physiol.
,
48
(
1
), pp.
18
46
.
4.
Noble
,
J. W.
,
2010
, “
Development of a Neuromechanical Model for Investigating Sensorimotor Interactions During Locomotion
,” Ph.D. thesis, University of Waterloo, ON, Canada.
5.
Rybak
,
I. A.
,
Shevtsova
,
N. A.
,
Lafreniere-Roula
,
M.
, and
McCrea
,
D. A.
,
2006
, “
Modelling Spinal Circuitry Involved in Locomotor Pattern Generation: Insights From Deletions During Fictive Locomotion
,”
J. Physiol.
,
577
(
Pt. 2
), pp.
617
639
.
6.
Rybak
,
I. A.
,
Stecina
,
K.
,
Shevtsova
,
N. A.
, and
McCrea
,
D. A.
,
2006
, “
Modelling Spinal Circuitry Involved in Locomotor Pattern Generation: Insights From the Effects of Afferent Stimulation
,”
J. Physiol.
,
577
(
Pt. 2
), pp.
641
658
.
7.
Ekeberg
,
O.
,
1993
, “
A Combined Neuronal and Mechanical Model of Fish Swimming
,”
Biol. Cybern.
,
69
(
5–6
), pp.
363
374
.
8.
Ekeberg
,
O.
, and
Grillner
,
S.
,
1999
, “
Simulations of Neuromuscular Control in Lamprey Swimming
,”
Philos. Trans. R. Soc., B
,
354
(
1385
), pp.
895
902
.
9.
Kozlov
,
A.
,
Huss
,
M.
,
Lansner
,
A.
,
Kotaleski
,
J. H.
, and
Grillner
,
S.
,
2009
, “
Simple Cellular and Network Control Principles Govern Complex Patterns of Motor Behavior
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
47
), pp.
20027
20032
.
10.
Ijspeert
,
A. J.
,
2001
, “
A Connectionist Central Pattern Generator for the Aquatic and Terrestrial Gaits of a Simulated Salamander
,”
Biol. Cybern.
,
84
(
5
), pp.
331
348
.
11.
Ijspeert
,
A. J.
,
Crespi
,
A.
,
Ryczko
,
D.
, and
Cabelguen
,
J.-M.
,
2007
, “
From Swimming to Walking With a Salamander Robot Driven by a Spinal Cord Model
,”
Science
,
315
(
5817
), pp.
1416
1420
.
12.
Harischandra
,
N.
,
Knuesel
,
J.
,
Kozlov
,
A.
,
Bicanski
,
A.
,
Cabelguen
,
J.-M.
,
Ijspeert
,
A. J.
, and
Ekeberg
,
O.
,
2011
, “
Sensory Feedback Plays a Significant Role in Generating Walking Gait and in Gait Transition in Salamanders: A Simulation Study
,”
Front. Neurorobotics
,
5
, p. 3.
13.
Sharif Shourijeh
,
M.
, and
McPhee
,
J.
,
2014
, “
Forward Dynamic Optimization of Human Gait Simulations: A Global Parameterization Approach
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031018
.
14.
Eliasmith
,
C.
,
Stewart
,
T. C.
,
Choo
,
X.
,
Bekolay
,
T.
,
DeWolf
,
T.
,
Tang
,
Y.
,
Tang
,
C.
, and
Rasmussen
,
D.
,
2012
, “
A Large-Scale Model of the Functioning Brain
,”
Science
,
338
(
6111
), pp.
1202
1205
.
15.
Eliasmith
,
C.
,
2013
,
How to Build a Brain: A Neural Architecture for Biological Cognition
,
Oxford University Press
,
New York
.
16.
DeWolf
,
T.
, and
Eliasmith
,
C.
,
2011
, “
The Neural Optimal Control Hierarchy for Motor Control
,”
J. Neural Eng.
,
8
(
6
), p.
065009
.
17.
Sharif Shourijeh
,
M.
, and
McPhee
,
J.
,
2013
, “
Optimal Control and Forward Dynamics of Human Periodic Motions Using Fourier Series for Muscle Excitation Patterns
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021005
.
18.
Silva
,
M. P. T.
, and
Ambrósio
,
J. A. C.
,
2003
, “
Solution of Redundant Muscle Forces in Human Locomotion With Multibody Dynamics and Optimization Tools
,”
Mech. Based Des. Struct. Mach.
,
31
(
3
), pp.
381
411
.
19.
Garner
,
B. A.
, and
Pandy
,
M. G.
,
2001
, “
Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
2
), pp.
37
41
.
20.
Lebiedowska
,
M. K.
,
2006
, “
Dynamic Properties of Human Limb Segments
,”
International Encyclopedia of Ergonomics and Human Factors
,
2nd ed.
, Vol.
3
,
W.
Karwowski
, ed.,
CRC Press
,
London
, p.
137
.
21.
Leva
,
P. D.
,
1996
, “
Adjustments to Zatsiorsky–Seluyanov's Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.
22.
Eliasmith
,
C.
, and
Anderson
,
C. H.
,
2003
,
Neural Engineering Computation, Representation, and Dynamics in Neurobiological Systems
,
MIT Press
,
Cambridge, MA
.
23.
Tripp
,
B.
,
2014
, “
Software—Bryan Tripp
,” accessed Dec. 4, 2014, http://bptripp.com/node/3
24.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.
25.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Static and Dynamic Optimization Solutions for Gait Are Practically Equivalent
,”
J. Biomech.
,
34
(
2
), pp.
153
161
.
26.
An
,
K.-N.
,
Kwak
,
B. M.
,
Chao
,
E. Y.
, and
Morrey
,
B. F.
,
1984
, “
Determination of Muscle and Joint Forces: A New Technique to Solve the Indeterminate Problem
,”
ASME J. Biomech. Eng.
,
106
(
4
), pp.
364
367
.
27.
Happee
,
R.
, and
Van der Helm
,
F. C. T.
,
1995
, “
The Control of Shoulder Muscles During Goal Directed Movements, an Inverse Dynamic Analysis
,”
J. Biomech.
,
28
(
10
), pp.
1179
1191
.
28.
Prilutsky
,
B. I.
, and
Zatsiorsky
,
V. M.
,
2002
, “
Optimization-Based Models of Muscle Coordination
,”
Exercise Sport Sci. Rev.
,
30
(
1
), pp.
32
38
.
29.
Thelen
,
D. G.
, and
Anderson
,
F. C.
,
2006
, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
,
39
(
6
), pp.
1107
1115
.
30.
Ackermann
,
M.
, and
van den Bogert
,
A. J.
,
2010
, “
Optimality Principles for Model-Based Prediction of Human Gait
,”
J. Biomech.
,
43
(
6
), pp.
1055
1060
.
31.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.
32.
Mehrabi
,
N.
,
Sharif Razavian
,
R.
, and
McPhee
,
J.
,
2015
, “
A Physics-Based Musculoskeletal Driver Model to Study Steering Tasks
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), pp.
1
8
.
33.
Churchland
,
M. M.
,
Cunningham
,
J. P.
,
Kaufman
,
M. T.
,
Foster
,
J. D.
,
Nuyujukian
,
P.
,
Ryu
,
S. I.
, and
Shenoy
,
K. V.
,
2012
, “
Neural Population Dynamics During Reaching
,”
Nature
,
487
(
7405
), pp.
51
56
.
34.
Thrasher
,
T. A.
,
Zivanovic
,
V.
,
McIlroy
,
W.
, and
Popovic
,
M. R.
,
2008
, “
Rehabilitation of Reaching and Grasping Function in Severe Hemiplegic Patients Using Functional Electrical Stimulation Therapy
,”
Neurorehabilitation Neural Repair
,
22
(
6
), pp.
706
714
.
35.
Kapadia
,
N. M.
,
Nagai
,
M. K.
,
Zivanovic
,
V.
,
Bernstein
,
J.
,
Woodhouse
,
J.
,
Rumney
,
P.
, and
Popovic
,
M. R.
,
2013
, “
Functional Electrical Stimulation Therapy for Recovery of Reaching and Grasping in Severe Chronic Pediatric Stroke Patients
,”
J. Child Neurol.
,
29
(
4
), pp.
1
7
.
36.
Thelen
,
D. G.
,
2003
, “
Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
70
77
.
37.
Winters
,
J. M.
, and
Stark
,
L.
,
1988
, “
Estimated Mechanical Properties of Synergistic Muscles Involved in Movements of a Variety of Human Joints
,”
J. Biomech.
,
21
(
12
), pp.
1027
1041
.
You do not currently have access to this content.