In this computational study, the implementation of passive nonlinear vibro-impact attachments (termed nonlinear energy sinks (NESs)) for shock mitigation of an otherwise linear multistory large-scale structure is investigated. This is achieved by inducing passive targeted energy transfer (TET) from the fundamental (lowest-frequency and most energetic) structural mode to high-frequency modes, through a series of vibro-impacts induced by the attachments. The functionality of the passive attachments is based on single-sided vibro-impacts (SSVIs), enabling rapid and one-way scattering of shock energy from low- to high-frequency structural modes. Hence, redistribution of shock energy in the modal space of the structure occurs as energy gets nonlinearly scattered to high frequencies. In turn, this energy scattering rapidly reduces the overall amplitude of the transient structural response, and increases the effective dissipative capacity of the integrated NES-structure assembly. The effective modal dissipation rates of the integrated assembly can be controlled by the inherent damping of the NESs, and can be qualitatively studied in detail by defining appropriate dissipative measures which track the TETs from low- and high-frequency structural modes. Ideally, the optimized NESs can passively scatter up to 80% of the input shock energy from the fundamental structural mode to high-frequency modes in the limit when their inherent damping is zero and the coefficient of restitution during vibro-impacts is unity. When dissipative effects are introduced into the NESs, additional energy exchanges between the NESs and high-frequency modes occur. Our study facilitates the predictive design of vibro-impact NESs for optimal and rapid shock mitigation of large-scale structures.

References

References
1.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Kerschen
,
G.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Lee
,
Y. S.
,
2008
, Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, I and II,
Springer Verlag
,
Berlin, Germany/New York
.
2.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.
3.
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2005
, “
Experimental Study of Non-Linear Energy Pumping Occurring at a Single Fast Frequency
,”
Int. J. Nonlinear Mech.
,
40
(
6
), pp.
891
899
.
4.
Vakakis
,
A. F.
,
2001
, “
Inducing Passive Nonlinear Energy Sinks in Vibrating Systems
,”
ASME J. Vib. Acoust.
,
123
(
3
), pp.
324
332
.
5.
Ji
,
J. C.
,
2012
, “
Application of a Weakly Nonlinear Absorber to Suppress the Resonant Vibrations of a Forced Nonlinear Oscillator
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
044502
.
6.
Gourdon
,
E.
,
Alexander
,
N. A.
,
Taylor
,
C. A.
,
Lamarque
,
C. H.
, and
Pernot
,
S.
,
2007
, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results
,”
J. Sound Vib.
,
300
(
3–5
), pp.
522
551
.
7.
Sigalov
,
G.
,
Gendelman
,
O. V.
,
AL-Shudeifat
,
M. A.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Resonance Captures and Targeted Energy Transfers in an Inertially Coupled Rotational Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
69
(
4
), pp.
1693
1704
.
8.
Sigalov
,
G.
,
Gendelman
,
O. V.
,
AL-Shudeifat
,
M. A.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Alternation of Regular and Chaotic Dynamics in a Simple Two-Degree-of-Freedom System With Nonlinear Inertial Coupling
,”
Chaos
,
22
(
1
), p.
013118
.
9.
AL-Shudeifat
,
M. A.
,
2014
, “
Highly Efficient Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
76
(
4
), pp.
1905
1920
.
10.
Manevitch
,
L. I.
,
Sigalov
,
G.
,
Romeo
,
F.
,
Bergman
,
L. A.
, and
Vakakis
,
A.
,
2013
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Analytical Study
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041011
.
11.
Sigalov
,
G.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2014
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Numerical Study
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011007
.
12.
Pantelidis
,
C. P.
, and
Ma
,
X.
,
1997
, “
Linear and Nonlinear Pounding of Structural Systems
,”
Comput. Struct.
,
66
(
1
), pp.
79
92
.
13.
Shaw
,
S. W.
, and
Rand
,
R. H.
,
1989
, “
The Transition to Chaos in a Simple Mechanical System
,”
Int. J. Nonlinear Mech.
,
24
(
1
), pp.
41
56
.
14.
Thota
,
P.
, and
Dankowicz
,
H.
,
2006
, “
Continuous and Discontinuous Grazing Bifurcations in Impacting Oscillators
,”
Physica D
,
214
(
2
), pp.
187
197
.
15.
Brogliato
,
B.
,
1999
,
Nonsmooth Mechanics
,
Springer Verlag
,
Berlin, Germany/New York
.
16.
Babitsky
,
V. I.
,
1998
,
Theory of Vibro-Impact Systems
,
Springer Verlag
,
Berlin, Germany/New York
.
17.
Leine
,
R. I.
, and
Nijmeijer
,
H.
,
2004
,
Dynamics and Bifurcations in Non-Smooth Mechanical Systems
,
Springer Verlag
,
Berlin, Germany/New York
.
18.
Filippov
,
A. F.
,
1988
,
Differential Equations With Discontinuous Righthand Sides
,
Kluwer Academic Publishers, Dordrecht
,
The Netherlands
.
19.
Luo
,
G. W.
, and
Xie
,
J. H.
,
1998
, “
Hopf Bifurcation of a Two-Degree-of-Freedom Vibro-Impact System
,”
J. Sound Vib.
,
213
(
3
), pp.
391
408
.
20.
Luo
,
G. W.
, and
Xie
,
J. H.
,
2002
, “
Hopf Bifurcations and Chaos of a Two-Degree-of-Freedom Vibro-Impact System in Two Strong Resonance Cases
,”
Int. J. Nonlinear Mech.
,
37
(
1
), pp.
19
34
.
21.
Wen
,
G. L.
,
2001
, “
Codimension-2 Hopf Bifurcation of a Two-Degree-of-Freedom Vibro-Impact System
,”
J. Sound Vib.
,
242
(
3
), pp.
475
485
.
22.
Luo
,
G. W.
, and
Xie
,
J. H.
,
2003
, “
Codimension Two Bifurcation of Periodic Vibro-Impact and Chaos of a Dual Component System
,”
Phys. Lett. A
,
313
(
4
), pp.
267
273
.
23.
Masri
,
S. F.
, and
Caughey
,
T. K.
,
1966
, “
On the Stability of the Impact Damper
,”
ASME J. Appl. Mech.
,
33
(
3
), pp.
586
592
.
24.
Gendelman
,
O. V.
,
2012
, “
Analytic Treatment of a System With a Vibro-Impact Nonlinear Energy Sink
,”
J. Sound Vib.
,
331
(
21
), pp.
4599
4608
.
25.
Ing
,
J.
,
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
, and
Banerjee
,
S.
,
2008
, “
Experimental Study of Impact Oscillator With One-Sided Elastic Constraint
,”
Philos. Trans. R. Soc. A
,
366
(
1866
), pp.
679
704
.
26.
Shaw
,
S. W.
,
1985
, “
Forced Vibrations of a Beam With One-Sided Amplitude Constraint: Theory and Experiment
,”
J. Sound Vib.
,
99
(
2
), pp.
199
212
.
27.
Nucera
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Kerschen
,
G.
,
2007
, “
Targeted Energy Transfers in Vibro-Impact Oscillators for Seismic Mitigation
,”
Nonlinear Dyn.
,
50
(
3
), pp.
651
677
.
28.
Karayannis
,
I.
,
Vakakis
,
A. F.
, and
Georgiades
,
F.
,
2008
, “
Vibro-Impact Attachments as Shock Absorbers
,”
Proc. Inst. Mech. Eng., Part C
,
222
(
10
), pp.
1899
1908
.
29.
Lee
,
Y. S.
,
Nucera
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
, and
Bergman
,
L. A.
,
2009
, “
Periodic Orbits, Damped Transitions and Targeted Energy Transfers in Oscillators With Vibro-Impact Attachments
,”
Physica D
,
238
(
18
), pp.
1868
1896
.
30.
AL-Shudeifat
,
M. A.
,
Wierschem
,
N.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
Spencer
,
B. F.
, Jr.
,
2013
, “
Numerical and Experimental Investigation of a Highly Effective Single-Sided Vibro-Impact Nonlinear Energy Sink for Shock Mitigation
,”
Int. J. Nonlinear Mech.
,
52
, pp.
96
109
.
31.
Luo
,
J.
,
Wierschem
,
N. E.
,
Hubbard
,
S. A.
,
Fahnestock
,
L. A.
,
Dane Quinn
,
D.
,
McFarland
,
D. M.
,
Spencer
,
B. F.
, Jr.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2014
, “
Large-Scale Experimental Evaluation and Numerical Simulation of a System of Nonlinear Energy Sinks for Seismic Mitigation
,”
Eng. Struct.
,
77
, pp.
34
48
.
32.
Luo
,
J.
,
Wierschem
,
N. E.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
, Jr.
,
Quinn
,
D. D.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2014
, “
Design, Simulation, and Large-Scale Testing of an Innovative Vibration Mitigation Device Employing Essentially Nonlinear Elastomeric Springs
,”
Earthquake Eng. Struct. Dyn.
,
43
(
12
), pp.
1829
1851
.
33.
Arnold
,
V. I.
, ed.,
1988
,
Encyclopedia of Mathematical Sciences, Dynamical Systems III
,
Springer Verlag
,
Berlin, Germany/New York
.
34.
Sapsis
,
T. P.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Effective Stiffening and Damping Enhancement of Structures With Strongly Nonlinear Local Attachments
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011016
.
You do not currently have access to this content.