Multiple-input multiple-output systems can be decomposed into several multiple-input single-output systems. This paper studies identification problems of multiple-input single-output nonlinear Box–Jenkins systems. In order to improve the computational efficiency, we decompose a multiple-input nonlinear Box–Jenkins system into two subsystems, one containing the parameters of the linear block, the other containing the parameters of the nonlinear block. A decomposition based maximum likelihood generalized extended least squares algorithm is derived for identifying the parameters of the system by using the maximum likelihood principle. Furthermore, a decomposition based generalized extended least squares algorithm is presented for comparison. The numerical example indicates that the proposed algorithms can effectively estimate the parameters of the nonlinear systems and can generate more accurate parameter estimates compared with existing methods.

References

References
1.
Malti
,
R.
,
Victor
,
S.
, and
Oustaloup
,
A.
,
2008
, “
Advances in System Identification Using Fractional Models
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2
), p.
021401
.
2.
Bai
,
E. W.
,
1998
, “
An Optimal Two-Stage Identification Algorithm for Hammerstein-Wiener Nonlinear Systems
,”
Automatica
,
34
(
3
), pp.
333
338
.
3.
Vyasarayani
,
C. P.
,
Uchida
,
T.
, and
McPhee
,
J.
,
2011
, “
Parameter Identification in Multibody Systems Using Lie Series Solutions and Symbolic Computation
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
4
), p.
041011
.
4.
Zhang
,
W. G.
,
2014
, “
Decomposition Based Least Squares Iterative Estimation for Output Error Moving Average Systems
,”
Eng. Comput.
,
31
(
4
), pp.
709
725
.
5.
Xie
,
L.
,
Yang
,
H. Z.
, and
Huang
,
B.
,
2013
, “
FIR Model Identification of Multirate Processes With Random Delays Using EM Algorithm
,”
AIChE J.
,
59
(
11
), pp.
4124
4132
.
6.
Ding
,
F.
,
Wang
,
Y. J.
, and
Ding
,
J.
,
2015
, “
Recursive Least Squares Parameter Identification Algorithms for Systems With Colored Noise Using the Filtering Technique and the Auxiliary Model
,”
Digital Signal Process.
,
37
, pp.
100
108
.
7.
Ji
,
Y.
, and
Liu
,
X. M.
,
2015
, “
Unified Synchronization Criteria for Hybrid Switching-Impulsive Dynamical Networks
,”
Circuits, Syst. Signal Process.
,
34
(
5
), pp.
1499
1517
.
8.
Zhang
,
Y.
, and
Cui
,
G. M.
,
2011
, “
Bias Compensation Methods for Stochastic Systems With Colored Noise
,”
Appl. Math. Modell.
,
35
(
4
), pp.
1709
1716
.
9.
Xiao
,
Y. S.
, and
Yue
,
N.
,
2011
, “
Parameter Estimation for Nonlinear Dynamical Adjustment Models
,”
Math. Comput. Modell.
,
54
(
5–6
), pp.
1561
1568
.
10.
Li
,
H.
, and
Shi
,
Y.
,
2012
, “
Robust H-Infty Filtering for Nonlinear Stochastic Systems With Uncertainties and Random Delays Modeled by Markov Chains
,”
Automatica
,
48
(
1
), pp.
159
166
.
11.
Vyasarayani
,
C. P.
,
Uchida
,
T.
, and
Mcphee
,
J.
,
2011
, “
Nonlinear Parameter Identification in Multibody Systems Using Homotopy Continuation
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011012
.
12.
Gondhalekar
,
A. C.
,
Petrov
,
E. P.
, and
Imregun
,
M.
,
2009
, “
Parameters Identification for Nonlinear Dynamic Systems Via Genetic Algorithm Optimization
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
4
), p.
041002
.
13.
Dehghan
,
M.
, and
Hajarian
,
M.
,
2012
, “
Iterative Algorithms for the Generalized Centro-Symmetric and Central Anti-Symmetric Solutions of General Coupled Matrix Equations
,”
Eng. Comput.
,
29
(
5
), pp.
528
560
.
14.
Wang
,
C.
, and
Tang
,
T.
,
2014
, “
Several Gradient-Based Iterative Estimation Algorithms for a Class of Nonlinear Systems Using the Filtering Technique
,”
Nonlinear Dyn.
,
77
(
3
), pp.
769
780
.
15.
Xie
,
L.
,
Liu
,
Y. J.
, and
Yang
,
H. Z.
,
2010
, “
Gradient Based and Least Squares Based Iterative Algorithms for Matrix Equations AXB +  CXTD  =  F
,”
Appl. Math. Comput.
,
217
(
5
), pp.
2191
2199
.
16.
Guo
,
D. S.
, and
Zhang
,
Y. N.
,
2014
, “
Neural Dynamics and Newton–Raphson Iteration for Nonlinear Optimization
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021016
.
17.
Ding
,
F.
,
Shi
,
Y.
, and
Chen
,
T.
,
2007
, “
Auxiliary Model Based Least-Squares Identification Methods for Hammerstein Output-Error Systems
,”
Syst. Control Lett.
,
56
(
5
), pp.
373
380
.
18.
Shen
,
X. Z.
, and
Meng
,
G.
,
2011
, “
MIMO Instantaneous Blind Identification Based on Second-Order Temporal Structure and Steepest-Descent Method
,”
Circuits, Syst. Signal Process.
,
30
(
3
), pp.
515
525
.
19.
Hua
,
Y. B.
,
2002
, “
Blind Methods of System Identification
,”
Circuits, Syst. Signal Process.
,
21
(
1
), pp.
91
108
.
20.
Giridhar
,
P. V. S.
, and
Narasimhan
,
S. V.
,
2000
, “
Improved System Blind Identification Based on Second-Order Cyclostationary Statistics: A Group Delay Approach
,”
Sadhana
,
25
(
2
), pp.
85
96
.
21.
Xu
,
X. P.
,
Wang
,
F.
,
Liu
,
G. J.
, and
Qian
,
F. C.
,
2013
, “
Identification of Hammerstein Systems Using Key-Term Separation Principle, Auxiliary Model and Improved Particle Swarm Optimisation Algorithm
,”
IET Signal Process.
,
7
(
8
), pp.
766
773
.
22.
Ding
,
F.
,
2014
, “
Hierarchical Parameter Estimation Algorithms for Multivariable Systems Using Measurement Information
,”
Inf. Sci.
,
277
, pp.
396
405
.
23.
Kayahan
,
B.
, and
Stengos
,
T.
,
2007
, “
Testing the Capital Asset Pricing Model With Local Maximum Likelihood Methods
,”
Math. Comput. Modell.
,
46
(
1–2
), pp.
138
150
.
24.
Lundahl
,
T.
,
Ohley
,
W. J.
,
Kay
,
S. M.
, and
Siffert
,
R.
,
2007
, “
Fractional Brownian Motion: A Maximum Likelihood Estimator and Its Application to Image Texture
,”
IEEE Trans. Med. Imaging
,
5
(
3
), pp.
152
161
.
25.
Bahl
,
L. R.
,
Jelinek
,
F.
, and
Mercer
,
R. L.
,
1983
, “
A Maximum Likelihood Approach to Continuous Speech Recognition
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
5
(
2
), pp.
179
190
.
26.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
,
2nd ed.
,
Prentice Hall
,
Englewood Cliffs, NJ
.
27.
Vanbeylen
,
L.
,
Pintelon
,
R.
, and
Schoukens
,
J.
,
2008
, “
Blind Maximum Likelihood Identification of Hammerstein Systems
,”
Automatica
,
44
(
12
), pp.
3139
3146
.
28.
Söderström
,
T.
,
Hong
,
M.
,
Schoukens
,
J.
, and
Pintelon
,
R.
,
2010
, “
Accuracy Analysis of Time Domain Maximum Likelihood Method and Sample Maximum Likelihood Method for Errors-in-Variables and Output Error Identification
,”
Automatica
,
46
(
4
), pp.
721
727
.
29.
Hagenblad
,
A.
,
Ljung
,
L.
, and
Wills
,
A.
,
2008
, “
Maximum Likelihood Identification of Wiener Models
,”
Automatica
,
44
(
11
), pp.
2697
2705
.
30.
Wang
,
W.
,
Ding
,
F.
, and
Dai
,
J. Y.
,
2012
, “
Maximum Likelihood Least Squares Identification for Systems With Autoregressive Moving Average Noise
,”
Appl. Math. Modell.
,
36
(
5
), pp.
1842
1853
.
31.
Chen
,
J.
, and
Ding
,
F.
,
2012
, “
Least Squares and Stochastic Gradient Parameter Estimation for Multivariable Nonlinear Box–Jenkins Models Based on the Auxiliary Model and the Multi-Innovation Identification Theory
,”
Eng. Comput.
,
29
(
8
), pp.
907
921
.
32.
Chen
,
F. Y.
,
Ding
,
F.
, and
Li
,
J. H.
,
2015
, “
Maximum Likelihood Gradient-Based Iterative Estimation Algorithm for a Class of Input Nonlinear Controlled Autoregressive ARMA Systems
,”
Nonlinear Dyn.
,
79
(
2
), pp.
927
936
.
33.
Ding
,
F.
,
2013
, “
Two-Stage Least Squares Based Iterative Parameter Estimation for CARARMA System Modeling
,”
Appl. Math. Modell.
,
37
(
7
), pp.
4798
4808
.
34.
Zhang
,
Y.
,
2011
, “
Unbiased Identification of a Class of Multi-Input Single-Output Systems With Correlated Disturbances Using Bias Compensation Methods
,”
Math. Comput. Modell.
,
53
(
9–10
), pp.
1810
1819
.
35.
Mercère
,
G.
, and
Bako
,
L.
,
2011
, “
Parameterization and Identification of Multivariable State-Space Systems: A Canonical Approach
,”
Automatica
,
47
(
8
), pp.
1547
1555
.
36.
Fu
,
Y.
, and
Chai
,
T. Y.
,
2007
, “
Nonlinear Multivariable Adaptive Control Using Multiple Models and Neural Networks
,”
Automatica
,
43
(
6
), pp.
1101
1110
.
37.
Zhang
,
H.
,
Shi
,
Y.
, and
Mehr
,
A. S.
,
2012
, “
Robust H-Infty PID Control for Multivariable Networked Control Systems With Disturbance/Noise Attenuation
,”
Int. J. Rob. Nonlinear Control
,
22
(
2
), pp.
183
204
.
38.
Sun
,
B.
,
Zhu
,
D. Q.
, and
Yang
,
S. X.
,
2013
, “
A Bio-Inspired Filtered Backstepping Cascaded Tracking Control of 7000 m Manned Submarine Vehicle
,”
IEEE Trans. Ind. Electron.
,
61
(
7
), pp.
3682
3692
.
39.
Zhu
,
D. Q.
,
Huang
,
H.
, and
Yang
,
S. X.
,
2013
, “
Dynamic Task Assignment and Path Planning of Multi-Auv System Based on an Improved Self-Organizing Map and Velocity Synthesis Method in 3D Underwater Workspace
,”
IEEE Trans. Cybern.
,
43
(
2
), pp.
504
514
.
40.
Luan
,
X. L.
,
Zhao
,
S. Y.
, and
Liu
,
F.
,
2013
, “
H-Infinity Control for Discrete-Time Markov Jump Systems With Uncertain Transition Probabilities
,”
IEEE Trans. Autom. Control
,
58
(
6
), pp.
1566
1572
.
41.
Wang
,
C.
, and
Tang
,
T.
,
2014
, “
Recursive Least Squares Estimation Algorithm Applied to a Class of Linear-in-Parameters Output Error Moving Average Systems
,”
Appl. Math. Lett.
,
29
, pp.
36
41
.
You do not currently have access to this content.