This paper dedicates on the rotor dynamics behavior analysis on a tilting pad bearing supported turbo-expander rotor system considering temperature gradient. Both numerical and experimental investigations are conducted intensively. The influence of the temperature gradient is modeled as the change of the lubrication oil viscosity and the length variation of the clearance due to the cryogenic thermal expansion of the journal. The analytical expressions of the tilting pad bearing oil-film force are then amended and substitute into the lumped parameter model of the turbo-expander rotor dynamics. Linear analysis based on this model indicates that the existence of the temperature gradient can stabilize the turbo-expander rotor system to an extent, while the nonlinear analyses reveal that the temperature gradient will advance the occurrence of the quasi-periodic motion and break the equilibrium of the vibration between the expander side and the compressor side. Furthermore, an experimental system is established and the experimental results show that the temperature of the tilting pad bearing is influenced by the environment temperature greatly; the spectrum of the displacement of the rotor is dominated by the synchronous frequency of the impellers and bearings. The experiment results also observe the vibration amplitude decreases when the environment temperature gets down and grows when the rotating speed increases. At the same time, the sensitivity of the vibration amplitude versus rotating speed decreases as the environment temperature rises, and vice versa.

References

References
1.
Smith
,
A. R.
, and
Klosek
,
J.
,
2001
, “
A Review of Air Separation Technologies and Their Integration With Energy Conversion Processes
,”
Fuel Process. Technol.
,
70
(
2
), pp.
115
134
.
2.
Bloch
,
H. P.
, and
Soares
,
C.
,
2001
,
Turboexpanders and Process Applications
,
Gulf Professional Publishing
, Houston, TX.
3.
Rayleigh
,
L.
,
1898
, “Liquid Air at One Operation,”
Nature
,
58
(1946), p.
199
.
4.
Xiong
,
L.-Y.
,
Wu
,
G.
,
Hou
,
Y.
,
Liu
,
L.-Q.
,
Ling
,
M.-F.
, and
Chen
,
C.-Z.
,
1997
, “
Development of Aerodynamic Foil Journal Bearings for a High Speed Cryogenic Turboexpander
,”
Cryogenics
,
37
(
4
), pp.
221
230
.
5.
Walton
,
J. F.
, and
Hesmat
,
H.
,
2002
, “
Application of Foil Bearings to Turbomachinery Including Vertical Operation
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
1032
1041
.
6.
Zhu
,
Q.
, and
Zhang
,
W. J.
,
2003
, “
A Preliminary Nonlinear Analysis of the Axial Transient Response of the Sector-Shaped Hydrodynamic Thrust Bearing-Rotor System
,”
ASME J. Tribol.
,
125
(
4
), pp.
854
858
.
7.
Hou
,
Y.
,
Zhu
,
Z. H.
, and
Chen
,
C. Z.
,
2004
, “
Comparative Test on Two Kinds of New Compliant Foil Bearing for Small Cryogenic Turbo-Expander
,”
Cryogenics
,
44
(
1
), pp.
69
72
.
8.
Wang
,
X.
,
Zhuang
,
M.
,
Zhang
,
Q.
,
Li
,
S.
, and
Fu
,
B.
,
2011
, “
Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander
,”
Plasma Sci. Technol.
,
13
(
4
), pp.
506
512
.
9.
Herzog
,
R.
,
Buhler
,
P.
,
Gahler
,
C.
, and
Larsonneur
,
R.
,
1996
, “
Unbalance Compensation Using Generalized Filters in the Multivariable Feedback of Magnetic Bearings
,”
IEEE Trans. Control Syst. Technol.
,
4
(
5
), pp.
580
586
.
10.
Qiu
,
J.
,
Tani
,
J.
, and
Kwon
,
T.
,
2003
, “
Control of Self-Excited Vibration of a Rotor System With Active Gas Bearings
,”
ASME J. Vib. Acoust.
,
125
(
3
), pp.
328
334
.
11.
Gjika
,
K.
,
San Andres
,
L.
, and
Larue
,
G. D.
,
2010
, “
Nonlinear Dynamic Behavior of Turbocharger Rotor-Bearing Systems With Hydrodynamic Oil Film and Squeeze Film Damper in Series: Prediction and Experiment
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
041006
.
12.
Ying
,
G.
,
Meng
,
G.
, and
Jing
,
J.
,
2009
, “
Turbocharger Rotor Dynamics With Foundation Excitation
,”
Arch. Appl. Mech.
,
79
(
4
), pp.
287
299
.
13.
Tian
,
L.
,
Wang
,
W.
, and
Peng
,
Z.
,
2011
, “
Dynamic Behaviours of a Full Floating Ring Bearing Supported Turbocharger Rotor With Engine Excitation
,”
J. Sound Vib.
,
330
(
20
), pp.
4851
4874
.
14.
Lee
,
J. G.
, and
Palazzolo
,
A.
,
2013
, “
Morton Effect Cyclic Vibration Amplitude Determination for Tilt Pad Bearing Supported Machinery
,”
ASME J. Tribol.
,
135
(
1
), p.
011701
.
15.
Schmied
,
J.
,
Pozivil
,
J.
, and
Walch
,
J.
,
2008
, “
Hot Spots in Turboexpander Bearings: Case History, Stability Analysis, Measurements and Operational Experience
,”
ASME
Paper No. GT2008-51179.
16.
Li
,
M.
,
Li
,
C.
,
Liu
,
X.
,
Li
,
H.
,
Li
,
F.
, and
Meng
,
G.
,
2015
, “
Nonlinear Rotor Dynamics on Turbo Expander With Unbalanced Bearing Force Caused by Temperature Difference
,”
J. Vibroeng.
,
17
(
1
), pp.
33
46
.
17.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
1990
,
Fundamentals of Fluid Mechanics
,
Wiley
,
New York
.
18.
Doolittle
,
A. K.
,
1951
, “
Studies in Newtonian Flow. I. The Dependence of the Viscosity of Liquids on Temperature
,”
J. Appl. Phys.
,
22
(
8
), pp.
1031
1035
.
19.
Kittel
,
C.
, and
McEuen
,
P.
,
1976
,
Introduction to Solid State Physics
,
Wiley
,
New York
.
20.
Nix
,
F.
, and
MacNair
,
D.
,
1941
, “
The Thermal Expansion of Pure Metals: Copper, Gold, Aluminum, Nickel, and Iron
,”
Phys. Rev.
,
60
(
8
), pp.
597
605
.
21.
Pagano
,
S.
,
Rocca
,
E.
,
Russo
,
M.
, and
Russo
,
R.
,
1995
, “
Dynamic Behaviour of Tilting-Pad Journal Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
209
(
4
), pp.
275
285
.
22.
Brancati
,
R.
,
Rocca
,
E.
, and
Russo
,
R.
,
1996
, “
Non-Linear Stability Analysis of a Rigid Rotor on Tilting Pad Journal Bearings
,”
Tribol. Int.
,
29
(
7
), pp.
571
578
.
23.
Okabe
,
E. P.
, and
Cavalca
,
K. L.
,
2009
, “
Rotordynamic Analysis of Systems With a Non-Linear Model of Tilting Pad Bearings Including Turbulence Effects
,”
Nonlinear Dyn.
,
57
(
4
), pp.
481
495
.
24.
Adams
,
M.
, and
Payandeh
,
S.
,
1983
, “
Self-Excited Vibration of Statically Unloaded Pads in Tilting-Pad Journal Bearings
,”
J. Lubr. Technol.
,
105
(
3
), pp.
377
383
.
25.
Liu
,
X.
,
2013
, “
Study on Nonlinear Dynamics of Double Cantilever Rotor-Bearing System
,” Master thesis, Shanghai Jiao Tong University, Shanghai, China (in Chinese).
26.
Bai
,
H.
,
Liu
,
X.
,
Li
,
H.
,
Zhang
,
W.
,
Meng
,
G.
,
Li
,
M.
, and
Wang
,
X.
,
2014
, “
Nonlinear Dynamic Characteristics of Large-Scale Tilting Pad Journal Bearing-Rotor Systems
,”
J. Vibroeng.
,
16
(
8
), pp.
4045
4064
.
27.
Campbell
,
W.
,
1924
, “Protection of Steam Turbine Disk Wheels From Axial Vibration,”
ASME
Spring Meeting, Cleveland, OH, Paper No. 1920.
You do not currently have access to this content.