In this manuscript, an implicit cosimulation method is analyzed, where the solvers are coupled by algebraic constraint equations. We discuss cosimulation approaches on index-2 and on index-1 level and investigate constant, linear and quadratic approximation functions for the coupling variables. The key idea of the method presented here is to discretize the Lagrange multipliers between the macrotime points (extended multiplier approach) so that the coupling equations and their time derivatives can simultaneously be fulfilled at the macrotime points. Stability and convergence of the method are investigated in detail. Following the stability analysis for time integration schemes based on Dahlquist's test equation, an appropriate cosimulation test model is used to examine the numerical stability of the presented cosimulation method. Discretizing the cosimulation test model by means of a linear cosimulation approach yields a system of linear recurrence equations. The spectral radius of the recurrence equation system characterizes the numerical stability of the underlying cosimulation method. As for time integration methods, 2D stability plots are used to graphically illustrate the stability behavior of the coupling approach.

References

1.
Gu
,
B.
, and
Asada
,
H. H.
,
2004
, “
Co-Simulation of Algebraically Coupled Dynamic Subsystems Without Disclosure of Proprietary Subsystem Models
,”
ASME J. Dyn. Syst., Meas. Control
,
126
(
1
), pp.
1
13
.
2.
Kübler
,
R.
, and
Schiehlen
,
W.
,
2000
, “
Two Methods of Simulator Coupling
,”
Math. Comput. Modell. Dyn. Syst.
,
6
(2), pp.
93
113
.
3.
Schweizer
,
B.
, and
Lu
,
D.
,
2014
, “
Predictor/Corrector Co-Simulation Approaches for Solver Coupling With Algebraic Constraints
,”
ZAMM—J. Appl. Math. Mech
.http://onlinelibrary.wiley.com/doi/10.1002/zamm.201300191/abstract
4.
Schweizer
,
B.
, and
Lu
,
D.
,
2014
, “
Co-Simulation Methods for Solver Coupling With Algebraic Constraints: Semi-Implicit Coupling Techniques
,”
Proceedings of The 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics (IMSD and ACMD 2014)
, June 30–July 3,
Bexco, Busan, Korea
.
5.
Schweizer
,
B.
, and
Lu
,
D.
, “
Stabilized Index-2 Co-Simulation Approach for Solver Coupling With Algebraic Constraints
,”
Multibody Syst. Dyn.
,
34
(2), pp. 129–161.
6.
Alioli
,
M.
,
Morandini
,
M.
, and
Masarati
,
P.
,
2013
, “
Coupled Multibody-Fluid Dynamics Simulation of Flapping Wings
,”
ASME
Paper No. DETC2013-12198.
7.
Ambrosio
,
J.
,
Pombo
,
J.
,
Pereira
,
M.
,
Antunes
,
P.
, and
Mosca
,
A.
,
2012
, “
A Computational Procedure for the Dynamic Analysis of the Catenary–Pantograph Interaction in High-Speed Trains
,”
J. Theory Appl. Mech.
,
50
(
3
), pp.
681
699
.
8.
Datar
,
M.
,
Stanciulescu
,
I.
, and
Negrut
,
D.
,
2011
, “
A Co-Simulation Framework for Full Vehicle Analysis
,”
Proceedings of the SAE 2011 World Congress
, SAE, Apr. 12–14, Detroit, MI, Technical Paper No. 2011-01-0516.
9.
Datar
,
M.
,
Stanciulescu
,
I.
, and
Negrut
,
D.
,
2012
, “
A Co-Simulation Environment for High-Fidelity Virtual Prototyping of Vehicle Systems
,”
Int. J. Veh. Syst. Modell. Test.
,
7
(1), pp.
54
72
.
10.
Friedrich
,
M.
, and
Ulbrich
,
H.
,
2010
, “
A Parallel Co-Simulation for Mechatronic Systems
,”
Proceedings of the 1st Joint International Conference on Multibody System Dynamics
, IMSD 2010, May 25–27, Lappeenranta, Finland.
11.
Gonzalez
,
F.
,
Gonzalez
,
M.
, and
Cuadrado
,
J.
,
2009
, “
Weak Coupling of Multibody Dynamics and Block Diagram Simulation Tools
,”
ASME
Paper No. DETC2009-86653.
12.
Hippmann
,
G.
,
Arnold
,
M.
, and
Schittenhelm
,
M.
,
2005
, “
Efficient Simulation of Bush and Roller Chain Drives
,”
ECCOMAS
Thematic Conference on Advances in Computational Multibody Dynamics,
J.
Goicolea
,
J.
Cuadrado
, and
J. G.
Orden
, eds., Madrid, Spain, June 21–24, 2005, pp.
1
18
.http://www.simpack.com/fileadmin/simpack/doc/mbd05_hippmann_arnold_schittenhelm.pdf
13.
Liao
,
Y. G.
, and
Du
,
H. I.
,
2001
, “
Co-Simulation of Multi-Body-Based Vehicle Dynamics and an Electric Power Steering Control System
,”
Proc. Inst. Mech. Eng., Part K
,
215
(3), pp.
141
151
.
14.
Negrut
,
N.
,
Melanz
,
D.
,
Mazhar
,
H.
,
Lamb
,
D.
, and
Jayakumar
,
P.
,
2013
, “
Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain
,”
SAE Int. J. Passenger Cars—Mech. Syst.
,
6
(1), pp.
369
381
.
15.
Schweizer
,
B.
, and
Lu
,
D.
,
2014
, “
Semi-Implicit Co-Simulation Approach for Solver Coupling
,”
Arch. Appl. Mech.
,
84
(
12
), pp.
1739
1769
.
16.
Schweizer
,
B.
,
Li
,
P.
,
Lu
,
D.
, and
Meyer
,
T.
,
2015
, “
Stabilized Implicit Co-Simulation Methods: Solver Coupling Based on Constitutive Laws
,”
Archive of Applied Mechanics
.
17.
Gear
,
C. W.
, and
Wells
,
D. R.
,
1984
, “
Multirate Linear Multistep Methods
,”
BIT
24
(4), pp.
484
502
.
18.
Arnold
,
M.
,
Clauss
,
C.
, and
Schierz
,
T.
,
2013
, “
Error Analysis and Error Estimates for Co-Simulation in FMI for Model Exchange and Co-Simulation in V2.0
,”
Arch. Mech. Eng.
,
60
(
1
), pp.
75
94
.
19.
Busch
,
M.
, and
Schweizer
,
B.
,
2011
, “
An Explicit Approach for Controlling the Macro-Step Size of Co-Simulation Methods
,”
Proceedings of the 7th European Nonlinear Dynamics
, ENOC 2011, July 24–29,
Rome, Italy
.
20.
Verhoeven
,
A.
,
Tasic
,
B.
,
Beelen
,
T. G. J.
,
terMaten
,
E. J. W.
, and
Mattheij
,
R. M. M.
,
2008
, “
BDF Compound-Fast Multirate Transient Analysis With Adaptive Stepsize Control
,”
J. Num. Anal., Ind. Appl. Math.
,
3
(
3–4
), pp.
275
297
.
21.
Anderson
,
K. S.
,
1993
, “
An Order–n Formulation for the Motion Simulation of General Multi-Rigid-Body Tree Systems
,”
Comput. Struct.
,
46
(
3
), pp.
547
559
.
22.
Anderson
,
K. S.
, and
Duan
,
S.
,
1999
, “
A Hybrid Parallelizable Low-Order Algorithm for Dynamics of Multi-Rigid-Body Systems: Part I, Chain Systems
,”
Math. Comput. Modell.
,
30
(
9–10
), pp.
193
215
.
23.
Cuadrado
,
J.
,
Cardenal
,
J.
,
Morer
,
P.
, and
Bayo
,
E.
,
2000
, “
Intelligent Simulation of Multibody Dynamics: Space-State and Descriptor Methods in Sequential and Parallel Computing Environments
,”
Multibody Syst. Dyn.
,
4
(1), pp.
55
73
.
24.
Lacoursiere
,
C.
,
Nordfeldth
,
F.
, and
Linde
,
M.
,
2014
, “
A Partitioning Method for Parallelization of Large Systems in Realtime
,”
Proceedings of the 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics (IMSD and ACMD 2014)
, June 30–July 3,
Bexco, Busan, Korea
.
25.
Laflin
,
J. J.
,
Anderson
,
K. S.
,
Khan
,
I. M.
, and
Poursina
,
M.
,
2014
, “
Advances in the Application of the Divide-and-Conquer Algorithm to Multibody System Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(4), p.
010301
.
26.
Malczyk
,
P.
, and
Fraczek
,
J.
,
2009
, “
Evaluation of Parallel Efficiency in Modeling of Mechanisms Using Commercial Multibody Solvers
,”
Arch. Mech. Eng.
,
56
(
3
), pp.
237
249
.
27.
Busch
,
M.
, and
Schweizer
,
B.
,
2012
, “
Coupled Simulation of Multibody and Finite Element Systems: An Efficient and Robust Semi-Implicit Coupling Approach
,”
Arch. Appl. Mech.
,
82
(
6
), pp.
723
741
.
28.
Carstens
,
V.
,
Kemme
,
R.
, and
Schmitt
,
S.
,
2003
, “
Coupled Simulation of Flow-Structure Interaction in Turbomachinery
,”
Aerosp. Sci. Technol.
,
7
(4), pp.
298
306
.
29.
Dörfel
,
M. R.
, and
Simeon
,
B.
,
2010
, “
Analysis and Acceleration of a Fluid–Structure Interaction Coupling Scheme
,”
Num. Math. Adv. Appl.
, pp.
307
315
.
30.
Meynen
,
S.
,
Mayer
,
J.
, and
Schäfer
,
M.
,
2000
, “
Coupling Algorithms for the Numerical Simulation of Fluid–Structure–Interaction Problems
,”
ECCOMAS: European Congress on Computational Methods in Applied Sciences and Engineering
,
Barcelona
.
31.
Naya
,
M.
,
Cuadrado
,
J.
,
Dopico
,
D.
, and
Lugris
,
U.
,
2011
, “
An Efficient Unified Method for the Combined Simulation of Multibody and Hydraulic Dynamics: Comparison With Simplified and Co-Integration Approaches
,”
Arch. Mech. Eng.
,
58
(2), pp.
223
243
.
32.
Schäfer
,
M.
,
Yigit
,
S.
, and
Heck
,
M.
,
2006
, “
Implicit Partitioned Fluid–Structure Interaction Coupling
,” ASME, Vancouver, Canada,
ASME
Paper No. PVP2006-ICPVT11-93184.
33.
Schmoll
,
R.
, and
Schweizer
,
B.
,
2011
, “
Co-Simulation of Multibody and Hydraulic Systems: Comparison of Different Coupling Approaches
,”
Proceedings of the Multibody Dynamics 2011, ECCOMAS Thematic Conference
,
J. C.
Samin
and
P.
Fisette
, eds., July 4–7,
Brussels, Belgium
, pp.
1
13
.
34.
Helduser
,
S.
,
Stuewing
,
M.
,
Liebig
,
S.
, and
Dronka
,
S.
,
2001
, “
Development of Electro-Hydraulic Actuators Using Linked Simulation and Hardware-in-the-Loop Technology
,”
Proceedings of Symposium on Power Transmission and Motion Control 2001 (PTMC 2001)
, Sept. 15–17,
Bath, UK
.
35.
Wuensche
,
S.
,
Clauß
,
C.
,
Schwarz
,
P.
, and
Winkler
,
F.
,
1997
, “
Electro-Thermal Circuit simulation Using Simulator Coupling
,”
Proceedings of the IEEE Transactions on Very Large Scale Integration (VLSI) Systems
, Vol.
5
, pp.
277
282
.
36.
Fancello
,
M.
,
Masarati
,
P.
, and
Morandini
,
M.
,
2013
, “
Adding Non-Smooth Analysis Capabilities to General-Purpose Multibody Dynamics by Co-Simulation
,”
ASME
Paper No. DETC2013-12208.
37.
Fancello
,
M.
,
Morandini
,
M.
, and
Masarati
,
P.
,
2014
, “
Helicopter Rotor Sailing by Non-Smooth Dynamics Co-Simulation
,”
Arch. Mech. Eng.
,
61
(
2
), pp.
253
268
.
38.
Eberhard
,
P.
,
Gaugele
,
T.
,
Heisel
,
U.
, and
Storchak
,
M.
,
2008
, “
A Discrete Element Material Model Used in a Co-Simulated Charpy Impact Test and for Heat Transfer
,”
Proceedings 1st International Conference on Process Machine Interactions
, Sept. 3–4,
Hannover, Germany
.
39.
Lehnart
,
A.
,
Fleissner
,
F.
, and
Eberhard
,
P.
,
2009
, “
Using SPH in a Co-Simulation Approach to Simulate Sloshing in Tank Vehicles
,”
Proceedings of the SPHERIC4
, May 27–29,
Nantes, France
.
40.
Spreng
,
F.
,
Eberhard
,
P.
, and
Fleissner
,
F.
,
2013
, “
An Approach for the Coupled Simulation of Machining Processes Using Multibody System and Smoothed Particle Hydrodynamics Algorithms
,”
Theory Appl. Mech. Lett.
,
3
(
1
), p.
013005
.
41.
Busch
,
M.
, and
Schweizer
,
B.
,
2010
, “
Numerical Stability and Accuracy of Different Co-Simulation Techniques: Analytical investigations Based on a 2-DOF Test Model
,”
Proceedings of the 1st Joint International Conference on Multibody System Dynamics (IMSD 2010)
, May 25–27,
Lappeenranta, Finland
.
42.
Schweizer
,
B.
,
Li
,
P.
, and
Lu
,
D.
,
2014
, “
Explicit and Implicit Co-Simulation Methods: Stability and Convergence Analysis for Different Solver Coupling Approaches
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051007
.
43.
Solcia
,
T.
, and
Masarati
,
P.
,
2011
, “
Efficient Multirate Simulation of Complex Multibody Systems Based on Free Software
,”
ASME
Paper No. DETC2011-47306.
44.
Wang
,
J.
,
Ma
,
Z. D.
, and
Hulbert
,
G.
,
2003
, “
A Gluing Algorithm for Distributed Simulation of Multibody Systems
,”
Nonlinear Dyn.
,
34
(1–2), pp.
159
188
.
45.
Tomulik
,
P.
, and
Fraczek
,
J.
,
2011
, “
Simulation of Multibody Systems With the Use of Coupling Techniques: A Case Study
,”
Multibody Syst. Dyn.
,
25
(
2
), pp.
145
165
.
46.
Schweizer
,
B.
,
Li
,
P.
, and
Lu
,
D.
, “
Implicit Co-Simulation Methods: Stability and Convergence Analysis for Solver Coupling With Algebraic Constraints
,”
ZAMM, J. Appl. Math. Mech.
(accepted).
47.
Gear
,
C. W.
,
Gupta
,
G. K.
, and
Leimkuhler
,
B. J.
,
1985
, “
Automatic Integration of the Euler–Lagrange Equations With Constraints
,”
J. Comp. Appl. Math.
,
12
and
13
, pp.
77
90
.
48.
Arnold
,
M
.,
2010
, “
Stability of Sequential Modular Time Integration Methods for Coupled Multibody System Models
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(3), p. 031003.
49.
Gonzalez
,
F.
,
Naya
,
M. A.
,
Luaces
,
A.
, and
Gonzalez
,
M.
,
2011
, “
On the Effect of Multirate Co-Simulation Techniques in the Efficiency and Accuracy of Multibody System Dynamics
,”
Multibody Syst. Dyn.
,
25
(
4
), pp.
461
483
.
50.
Hairer
,
E.
,
Norsett
,
S. P.
, and
Wanner
,
G.
,
2009
,
Solving Ordinary Differential Equations I: Nonstiff Problems
, 3rd ed.,
Springer
,
New York
.
51.
Hairer
,
E.
, and
Wanner
,
G.
,
2010
,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
, 2nd ed.,
Springer
,
New York
.
52.
Bauchau
,
O.
,
Epple
,
A.
, and
Bottasso
,
C.
,
2009
, “
Scaling of Constraints and Augmented Lagrangian Formulations in Multibody Dynamics Simulations
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021007
.
53.
Bottasso
,
C.
,
Bauchau
,
O.
, and
Cardona
,
A.
,
2007
, “
Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index Three Differential Algebraic Equations
,”
SIAM J. Sci. Comput.
,
29
(
1
), pp.
397
414
.
54.
Bottasso
,
C.
,
Dopico
,
D.
, and
Trainelli
,
L.
,
2008
, “
On the Optimal Scaling of Index-Three DAEs in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
19
, pp.
3
20
.
55.
Eich-Soellner
,
E.
, and
Führer
,
C.
,
1998
,
Numerical Methods in Multibody Dynamics
,
B. G. Teubner Stuttgart
, Germany.
This content is only available via PDF.
You do not currently have access to this content.