In this article, a powerful computational methodology, named as barycentric rational interpolation iteration collocation method (BRICM), for obtaining the numerical solutions of nonlinear vibration problems is presented. The nonlinear vibration problems are governed by initial-value problems of nonlinear differential equations. Given an initial guess value of the unknown function, the nonlinear differential equations can be transformed into linear differential equations. By applying barycentric rational interpolation and differential matrix, the linearized differential equation is discretized into algebraic equations in the matrix form. The latest solution of nonlinear differential equation is obtained by solving the algebraic equations. The numerical solution of nonlinear vibration problem can be calculated by iteration method under given control precision. Then, the velocity and acceleration can be obtained by differential matrix of barycentric rational interpolation, and the period of nonlinear vibration is also computed by BRICM. Some examples of nonlinear vibration demonstrate the proposed methodological advantages of effectiveness, simple formulations, and high precision.

References

References
1.
Hemeda
,
A. A.
,
2012
, “
Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations
,”
Appl. Math. Sci.
,
6
(
96
), pp.
4787
4800
.
2.
Kumar
,
D.
,
Singh
,
J.
, and
Rathore
,
S.
,
2012
, “
Sumudu Decomposition Method for Nonlinear Equations
,”
Int. Math. Forum
,
7
(
11
), pp.
515
521
.
3.
Emad Az-Zo'bi
,
2012
, “
Modified Laplace Decomposition Method
,”
World Appl. Sci. J.
,
18
(
11
), pp.
1481
1486
.
4.
Abbas
,
Y. Al-B.
,
Ann
,
J. Al-S.
, and
Merna
,
A. S.
,
2009
, “
A Multistage Adomian Decomposition Method for Solving the Autonomous Van der Pol System
,”
Aust. J. Basic Appl. Sci.
,
3
(
4
), pp.
4397
4407
.
5.
Abassy
,
T. A.
,
El-Tawil
,
M. A.
, and
El-Zoheiry
,
H.
,
2007
, “
Modified Variational Iteration Method for Boussinesq Equation
,”
Comput. Math. Appl.
,
54
(
7–8
), pp.
955
965
.
6.
Simo
,
J. C.
, and
Armero
,
F.
,
1992
, “
Geometrically Non-Linear Enhanced Strain Mixed Methods and the Method of Incompatible Modes
,”
Int. J. Numer. Methods Eng.
,
33
(
7
), pp.
1413
1449
.
7.
Wriggers
,
P.
, and
Reese
,
S.
,
1996
, “
A Note on Enhanced Strain Methods for Large Deformations
,”
Comput. Methods Appl. Mech. Eng.
,
135
(
3–4
), pp.
201
209
.
8.
Cockburn
,
B.
,
2001
, “
Devising Discontinuous Galerkin Methods for Non-Linear Hyperbolic Conservation Laws
,”
J. Comput. Appl. Math.
,
128
(
1–2
), pp.
187
204
.
9.
Cockburn
,
B.
,
2003
, “
Discontinuous Galerkin Methods
,”
Z. Angew. Math. Mech.
,
83
(
11
), pp.
731
754
.
10.
Noels
,
L.
, and
Radovitzky
,
R.
,
2006
, “
A New Discontinuous Galerkin Method for Non-Linear Mechanics
,”
AIAA
Paper No. 2006-2122.
11.
Izadian
,
J.
, and
Mohammadzade Attar
,
M.
,
2012
, “
Numerical Solution of Deformation Equations in Homotopy Analysis Method
,”
Appl. Math. Sci.
,
6
(
8
), pp.
357
367
.
12.
Han
,
Z. D.
,
Rajendran
,
A. M.
, and
Atluri
,
S. N.
,
2005
, “
Meshless Local Petrov–Galerkin (MLPG) Approaches for Solving Nonlinear Problems With Large Deformations and Rotations
,”
Comput. Model. Eng. Sci.
,
10
(
1
), pp.
1
12
.
13.
Zhao
,
T.
,
Wu
,
Y.
, and
Ma
,
H.
,
2010
, “
Chebyshev–Legendre Pseudo-Spectral Methods for Nonclassical Parabolic Equations
,”
J. Inf. Comput. Sci.
,
7
(
8
), pp.
1809
1817
.
14.
Lee
,
S. Y.
,
Lu
,
S. Y.
, and
Liu
,
Y. T.
,
2008
, “
Exact Large Deflection Solutions for Timoshenko Beams With Nonlinear Boundary Conditions
,”
Comput. Model. Eng. Sci.
,
33
(
3
), pp.
293
312
.
15.
Peng
,
J.-S.
,
Liu
,
Y.
, and
Yang
,
J.
,
2010
, “
A Semianalytical Method for Nonlinear Vibration of Euler-Bernoulli Beams With General Boundary Conditions
,”
Math. Probl. Eng.
,
2010
, p.
591786
.
16.
Hu
,
H. Y.
, and
Chen
,
J. S.
,
2008
, “
Radial Basis Collocation Method and Quasi-Newton Iteration for Nonlinear Elliptic Problems
,”
Numer. Methods Partial Differ. Equations
,
24
(
3
), pp.
991
1017
.
17.
Yan
,
J.-P.
, and
Guo
,
B.-Y.
,
2011
, “
A Collocation Method for Initial Value Problems of Second-Order ODEs by Using Laguerre Functions
,”
Numer. Math.: Theory Methods Appl.
,
4
(
2
), pp.
283
295
.
18.
Rashidinia
,
J.
,
Ghasemi
,
M.
, and
Jalilian
,
R.
,
2010
, “
A Collocation Method for the Solution of Nonlinear One-Dimensional Parabolic Equations
,”
Math. Sci.
,
4
(
1
), pp.
87
104
.
19.
Shu
,
C.
,
Ding
,
H.
, and
Yeo
,
K. S.
,
2004
, “
Solution of Partial Differential Equations by a Global Radial Basis Function-Based Differential Quadrature Method
,”
Eng. Anal. Boundary Elem.
,
28
(
10
), pp.
1217
1226
.
20.
Ma
,
H.
, and
Qin
,
Q.-H.
,
2008
, “
An Interpolation-Based Local Differential Quadrature Method to Solve Partial Differential Equations Using Irregularly Distributed Nodes
,”
Commun. Numer. Methods Eng.
,
24
(
7
), pp.
573
584
.
21.
Liu
,
G. R.
, and
Wu
,
T. Y.
,
2000
, “
Numerical Solution for Differential Equations of Duffing-Type Non-Linearity Using the Generalized Differential Quadrature Rule
,”
J. Sound Vib.
,
237
(
5
), pp.
805
817
.
22.
Tomasiello
,
S.
,
2003
, “
Simulating Non-Linear Coupled Oscillators by an Iterative Differential Quadrature Method
,”
J. Sound Vib.
,
265
(
3
), pp.
507
525
.
23.
Pu
,
J.-P.
, and
Zheng
,
J.-J.
,
2006
, “
Structural Dynamic Responses Analysis Applying Differential Quadrature Method
,”
J. Zhejiang Univ., Sci., A
,
7
(
11
), pp.
1831
1838
.
24.
Ordokhani
,
Y.
,
2007
, “
A Collocation Method for Solving Nonlinear Differential Equations Via Hybrid of Rationalized Haar Functions
,”
J. Sci. Tarbiat Moallem Univ.
,
7
(
3
), pp.
223
232
.
25.
Tsai
,
C.-C.
,
Liu
,
C.-S.
, and
Yeih
,
W.-C.
,
2010
, “
Fictitious Time Integration Method of Fundamental Solutions With Chebyshev Polynomials for Solving Poisson-Type Nonlinear PDEs
,”
Comput. Model. Eng. Sci.
,
56
(
2
), pp.
131
151
.
26.
Chen
,
L.
,
2010
, “
An Integral Approach for Large Deflection Cantilever Beams
,”
Int. J. Non-Linear Mech.
,
45
(
3
), pp.
301
305
.
27.
Zhu
,
T.
,
Zhang
,
J.
, and
Atluri
,
S. N.
,
1998
, “
A Meshless Local Boundary Integral Equation (LBIE) Method for Solving Nonlinear Problems
,”
Comput. Mech.
,
22
(
2
), pp.
174
186
.
28.
Li
,
S.-C.
, and
Wang
,
Z.-Q.
,
2012
,
High Precision and Meshless Barycentric Interpolation Collocation Method: Algorithm, Program and Engineering Application
,
Beijing Science Press
,
Beijing
.
29.
Koçak
,
H.
, and
Yıldırım
,
A.
,
2011
, “
An Efficient New Iterative Method for Finding Exact Solutions of Nonlinear Time-Fractional Partial Differential Equations
,”
Nonlinear Anal.: Modell. Control
,
16
(
4
), pp.
403
414
.
30.
Amirfakhrian
,
M.
, and
Keighobadi
,
S.
,
2012
, “
Solution for Partial Differential Equations Involving Logarithmic Nonlinearities
,” Aust. J. Basic Appl. Sci.,
5
(
4
), pp.
60
66
.
31.
Duangpithak
,
S.
,
2012
, “
Variational Iteration Method for Special Nonlinear Partial Differential Equation
,” Int. J. Math. Anal.,
6
(
22
), pp.
1071
1077
.
32.
Zhong
,
H.-Z.
, and
Lan
,
M.-Y.
,
2006
, “
Solution of Nonlinear Initial-Value Problems by the Spline-Based Differential Quadrature Method
,”
J. Sound Vib.
,
296
(
4–5
), pp.
908
918
.
33.
Gachpazan
,
M.
, and
Kamyad
,
A. V.
,
2004
, “
Solving of Second Order Nonlinear PDE Problems by Using Artificial Controls With Controlled Error
,”
J. Appl. Math. Comput.
,
15
(
1–2
), pp.
173
184
.
34.
Weideman
,
J. A. C.
, and
Reddy
,
S. C.
,
2000
, “
A matlab Differentiation Matrix Suite
,”
ACM Trans. Math. Software
,
26
(
4
), pp.
465
519
.
35.
Floater
,
M. S.
, and
Hormann
,
K.
,
2007
, “
Barycentric Rational Interpolation With No Poles and High Rates of Approximation
,”
Numer. Math.
,
107
(
2
), pp.
315
331
.
36.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
This content is only available via PDF.
You do not currently have access to this content.