In this paper, the numerical solution for the fractional order partial differential equation (PDE) of parabolic type has been presented using two dimensional (2D) Legendre wavelets method. 2D Haar wavelets method is also applied to compute the numerical solution of nonlinear time-fractional PDE. The approximate solutions of nonlinear fractional PDE thus obtained by Haar wavelet method and Legendre wavelet method are compared with the exact solution obtained by using homotopy perturbation method (HPM). The present scheme is simple, effective, and expedient for obtaining numerical solution of the fractional PDE.

References

References
1.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2001
, “
Initialization in Fractional Order Systems
,”
European Control Conference
,
Porto, Portugal
, pp.
1471
1476
.
2.
Sabatier
,
J.
,
Merveillaut
,
M.
,
Malti
,
R.
, and
Oustaloup
,
A.
,
2010
, “
How to Impose Physically Coherent Initial Conditions to a Fractional System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
5
), pp.
1318
1326
.
3.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic
,
NY
.
4.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Taylor and Francis
,
London, UK
.
5.
He
,
J.
,
2003
, “
Homotopy Perturbation Method: A New Nonlinear Analytical Technique
,”
Appl. Math. Comput.
,
135
(
1
), pp.
73
79
.
6.
He
,
J.
,
1999
, “
Homotopy Perturbation Technique
,”
Comput. Methods Appl. Mech. Eng.
,
178
(
3–4
), pp.
257
262
.
7.
Khan
,
Y.
, and
Wu
,
Q.
,
2011
, “
Homotopy Perturbation Transform Method for Nonlinear Equations Using He's Polynomial
,”
Comput. Math. Appl.
,
61
(
8
), pp.
1963
1967
.
8.
Khan
,
Y.
, and
Usman
,
M.
,
2014
, “
Modified Homotopy Perturbation Transform Method: A Paradigm for Nonlinear Boundary Layer Problems
,”
Int. J. Nonlinear Sci. Num. Simul.
,
15
(
1
), pp.
19
25
.
9.
Saha Ray
,
S.
,
2012
, “
On Haar Wavelet Operational Matrix of General Order and Its Application for the Numerical Solution of Fractional Bagley Torvik Equation
,”
Appl. Math. Comput.
,
218
(
9
), pp.
5239
5248
.
10.
Saha Ray
,
S.
, and
Patra
,
A.
,
2013
, “
Haar Wavelet Operational Methods for the Numerical Solutions of Fractional Order Nonlinear Oscillatory Van der Pol System
,”
Appl. Math. Comput.
,
220
, pp.
659
667
.
11.
Chen
,
C. F.
, and
Hsiao
,
C. H.
,
1997
, “
Haar Wavelet Method for Solving Lumped and Distributed Parameter-Systems
,”
IEE Proc. Control Theory Appl.
,
144
(
1
), pp.
87
94
.
12.
Razzaghi
,
M.
, and
Yousefi
,
S.
,
2001
, “
The Legendre Wavelets Operational Matrix of Integration
,”
Int. J. Syst. Sci.
,
32
(
4
), pp.
495
502
.
13.
Rehman
,
M.
, and
Khan
,
R. A.
,
2011
, “
The Legendre Wavelet Method for Solving Fractional Differential Equations
,”
Commun. Nonlinear Sci. Num. Simul.
,
16
(
11
), pp.
4163
4173
.
14.
Nanshan
,
L.
, and
Lin
,
E. B.
,
2010
, “
Legendre Wavelet Method for Numerical Solutions of Partial Differential Equations
,”
Numer. Methods Partial Differ. Eq.
,
26
(
1
), pp.
81
94
.
You do not currently have access to this content.