Here, we introduce and analyze a novel approximation of the well-established and widely used spring-loaded inverted pendulum (SLIP) model of legged locomotion, which has made several validated predictions of the center-of-mass (CoM) or point-mass motions of animal and robot running. Due to nonlinear stance equations in the existing SLIP model, many linear-based systems theories, analytical tools, and corresponding control strategies cannot be readily applied. In order to provide a significant simplification in the use and analysis of the SLIP model of locomotion, here we develop a novel piecewise-linear, time-invariant approximation. We show that a piecewise-linear system, with the only nonlinearity due to the switching event between stance and flight phases, can predict all the bifurcation features of the established nonlinear SLIP model over the entire three-dimensional model parameter space. Rather than precisely fitting only one particular solution, this approximation is made to quantitatively approximate the entire solution space of the SLIP model and capture all key aspects of solution bifurcation behavior and parametric sensitivity of the original SLIP model. Further, we provide an entirely closed-form solution for the stance trajectory as well as the system states at the end of stance, in terms of common functions that are easy to code and compute. Overall, the closed-form solution is found to be significantly faster than numerical integration when implemented using both matlab and c++. We also provide a closed-form analytical stride map, which is a Poincaré return section from touchdown (TD) to next TD event. This is the simplest closed-form approximate stride mapping yet developed for the SLIP model, enabling ease of analysis and numerical coding, and reducing computational time. The approximate piecewise-linear SLIP model presented here is a significant simplification over previous SLIP-based models and could enable more rapid development of legged locomotion theory, numerical simulations, and controllers.

References

References
1.
Blickhan
,
R.
,
1989
, “
The Spring–Mass Model for Running and Hopping
,”
J. Biomech.
,
22
(
11–12
), pp.
1217
1227
.10.1016/0021-9290(89)90224-8
2.
Blickhan
,
R.
, and
Full
,
R.
,
1993
, “
Similarity in Multilegged Locomotion: Bouncing Like a Monopode
,”
J. Comp. Physiol., A
,
173
(
5
), pp.
509
517
.10.1007/BF00197760
3.
Holmes
,
P.
,
Full
,
R.
,
Koditschek
,
D.
, and
Guckenheimer
,
J.
,
2006
, “
The Dynamics of Legged Locomotion: Models, Analyses, and Challenges
,”
SIAM Rev.
,
48
(
2
), pp.
207
304
.10.1137/S0036144504445133
4.
Dalleau
,
G.
,
Belli
,
A.
,
Bourdin
,
M.
, and
Lacour
,
J.
,
1998
, “
The Spring–Mass Model and the Energy Cost of Treadmill Running
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
77
(
3
), pp.
257
263
.10.1007/s004210050330
5.
McMahon
,
T.
,
1984
, “
Mechanics of Locomotion
,”
Int. J. Rob. Res.
,
3
(
2
), pp.
4
28
.10.1177/027836498400300202
6.
Raibert
,
M.
,
1986
,
Legged Robots That Balance
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
7.
McGeer
,
T.
,
1990
, “
Passive Bipedal Running
,”
Proc. R. Soc. London, Ser. B
,
240
(
1297
), pp.
107
134
.10.1098/rspb.1990.0030
8.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Rob. Res.
,
9
(
2
), pp.
62
82
.10.1177/027836499000900206
9.
Alexander
,
R.
,
1995
, “
Simple Models of Human Movement
,”
ASME Appl. Mech. Rev.
,
48
(
8
), pp.
461
470
.10.1115/1.3005107
10.
Schwind
,
W.
,
1998
, “
Spring Loaded Inverted Pendulum Running: A Plant Model
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
11.
Farley
,
C.
,
Blickhan
,
R.
,
Saito
,
J.
, and
Taylor
,
C.
,
1991
, “
Hopping Frequency in Humans: A Test of How Springs Set Stride Frequency in Bouncing Gaits
,”
J. Appl. Physiol.
,
71
(
6
), pp.
2127
32
.
12.
He
,
J.
,
Kram
,
R.
, and
McMahon
,
T.
,
1991
, “
Mechanics of Running Under Simulated Low Gravity
,”
J. Appl. Physiol.
,
71
(
3
), pp.
863
870
.
13.
Farley
,
C.
,
Glasheen
,
J.
, and
McMahon
,
T.
,
1993
, “
Running Springs: Speed and Animal Size
,”
J. Exp. Biol.
,
185
, pp.
71
86
.
14.
Ferris
,
D.
, and
Farley
,
C.
,
1997
, “
Interaction of Leg Stiffness and Surface Stiffness During Human Hopping
,”
J. Appl. Physiol.
,
82
(
1
), pp.
15
22
.
15.
Ferris
,
D.
,
Louie
,
M.
, and
Farley
,
C.
,
1998
, “
Running in the Real World: Adjusting Leg Stiffness for Different Surfaces
,”
Proc. R. Soc. London, Ser. B
,
265
(
1400
), pp.
989
994
.10.1098/rspb.1998.0388
16.
Ferris
,
D.
,
Liang
,
K.
, and
Farley
,
C.
,
1999
, “
Runners Adjust Leg Stiffness for Their First Step on a New Running Surface
,”
J. Biomech.
,
32
(
8
), pp.
787
794
.10.1016/S0021-9290(99)00078-0
17.
Lee
,
C.
, and
Farley
,
C.
,
1998
, “
Determinants of the Center of Mass Trajectory in Human Walking and Running
,”
J. Exp. Biol.
,
201
(
21
), pp.
2935
2944
.
18.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2006
, “
Compliant Leg Behavior Explains Basic Dynamics of Walking and Running
,”
Proc. R. Soc. London, Ser. B
,
273
(
1603
), pp.
2861
2867
.10.1098/rspb.2006.3637
19.
Jun
,
J.
, and
Clark
,
J.
,
2009
, “
Dynamic Stability of Variable Stiffness Running
,”
Proceedings of the 2009 IEEE international Conference on Robotics and Automation
,
Kobe, Japan
, May 12–17, pp.
3985
3990
.
20.
Seyfarth
,
A.
,
Geyer
,
H.
,
Gunther
,
M.
, and
Blickhan
,
R.
,
2002
, “
A Movement Criterion for Running
,”
J. Biomech.
,
35
(
5
), pp.
649
655
.10.1016/S0021-9290(01)00245-7
21.
Altendorfer
,
R.
,
Koditschek
,
D.
, and
Holmes
,
P.
,
2003
, “
Towards a Factored Analysis of Legged Locomotion Models
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Taipei, Taiwan
, Sept. 14–19, pp.
37
44
.
22.
Seipel
,
J.
, and
Holmes
,
P.
,
2006
, “
Three Dimensional Translational Dynamics and Stability of Multi-Legged Runners
,”
Int. J. Rob. Res.
,
25
(
9
), pp.
889
902
.10.1177/0278364906069045
23.
Grimmer
,
S.
,
Ernst
,
M.
,
Gunther
,
M.
, and
Blickhan
,
R.
,
2008
, “
Running on Uneven Ground: Leg Adjustment to Vertical Steps and Self-Stability
,”
J. Exp. Biol.
,
211
(
Pt. 18
), pp.
2989
3000
.10.1242/jeb.014357
24.
Full
,
R.
, and
Koditschek
,
D.
,
1999
, “
Templates and Anchors: Neuromechanical Hypotheses of Legged Locomotion on Land
,”
J. Exp. Biol.
,
202
(
Pt. 23
), pp.
3325
3332
.
25.
Schmitt
,
J.
,
2006
, “
A Simple Stabilizing Control for Sagittal Plane Locomotion
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
4
), pp.
348
357
.10.1115/1.2338650
26.
Schmitt
,
J.
, and
Clark
,
J.
,
2009
, “
Modeling Posture-Dependent Leg Actuation in Sagittal Plane Locomotion
,”
Bioinspiration Biomimetics
,
4
(
4
), p.
046005
.10.1088/1748-3182/4/4/046005
27.
Tamaddoni
,
S.
,
Jafari
,
F.
, and
Medhdari
,
A.
,
2010
, “
Biped Hopping Control on Spring Loaded Inverted Pendulum
,”
Int. J. Humanoid Rob.
,
7
(
2
), pp.
263
280
.10.1142/S0219843610002106
28.
Kimura
,
Y.
,
Oh
,
S.
, and
Hori
,
Y.
,
2012
, “
Leg Space Observer on Biarticular Actuated Two-Link Manipulator for Realizing Spring Loaded Inverted Pendulum Model
,” 2012
IEEE
International Workshop on Advanced Motion Control
,
Sarajevo, Bosnia and Herzegovina
, Mar. 25–27, pp.
1
6
.10.1109/AMC.2012.6197054
29.
Piovan
,
G.
, and
Byl
,
K.
,
2012
, “
Enforced Symmetry of the Stance Phase for the Spring-Loaded Inverted Pendulum
,” 2012
IEEE
International Conference on Robotics and Automation
,
St. Paul, MN
, May 14–18, pp.
1908
1914
.10.1109/ICRA.2012.6224656
30.
Sato
,
A.
, and
Buehler
,
M.
,
2004
, “
A Planar Hopping Robot With One Actuator: Design, Simulation, and Experimental Results
,”
Intelligent Robots and Systems, 2004
,
Sendai, Japan
, 28 Sept.–2 Oct., pp.
3540
3545
.
31.
Seyfarth
,
A.
,
Geyer
,
H.
, and
Herr
,
H.
,
2003
, “
Swing-Leg Retraction: A Simple Control Model for Stable Running
,”
J. Exp. Biol.
,
206
(
Pt. 15
), pp.
2547
2555
.10.1242/jeb.00463
32.
Blum
,
Y.
,
Lipfert
,
S.
,
Rummel
,
J.
, and
Seyfarth
,
A.
,
2010
, “
Swing Leg Control in Human Running
,”
Bioinspiration Biomimetics
,
5
(
2
), p.
026006
.10.1088/1748-3182/5/2/026006
33.
Kim
,
K.
,
Kwon
,
O.
,
Yeon
,
J.
, and
Park
,
J. H.
,
2006
, “
Elliptic Trajectory Generation for Galloping Quadruped Robots
,”
IEEE International Conference on Robotics and Biomimetics, ROBIO '06
,
Kunming, China
, Dec. 17–20, pp.
103
108
.
34.
Andrews
,
B.
,
Miller
,
B.
,
Schmitt
,
J.
, and
Clark
,
J.
,
2011
, “
Running Over Unknown Rough Terrain With a One-Legged Planar Robot
,”
Bioinspiration Biomimetics
,
6
(
2
), p.
026009
.10.1088/1748-3182/6/2/026009
35.
Poulakakis
,
I.
, and
Grizzle
,
J.
,
2009
, “
The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper
,”
IEEE Trans. Autom. Control
,
54
(
8
), pp.
1779
1793
.10.1109/TAC.2009.2024565
36.
Saranli
,
U.
,
Buehler
,
M.
, and
Koditschek
,
D.
,
2001
, “
RHex: A Simple and Highly Mobile Hexapod Robot
,”
Int. J. Rob. Res.
,
20
(
1
), pp.
616
631
.10.1177/02783640122067570
37.
Altendorfer
,
R.
,
Koditschek
,
D.
,
Komsuoglu
,
H.
,
Buehler
,
M.
,
Moore
,
N.
, and
Mcmordie
,
D.
,
2001
, “
Evidence for Spring Loaded Inverted Pendulum Running in a Hexapod Robot
,”
Exp. Rob. VII
,
271
, pp.
291
302
.10.1007/3-540-45118-8
38.
Komsuoglu
,
H.
,
Majumdar
,
A.
,
Aydin
,
Y.
, and
Koditschek
,
D.
,
2010
, “
Characterization of Dynamic Behaviors in a Hexapod Robot
,”
International Symposium on Experimental Robotics
, pp.
667
684
.10.1007/978-3-642-28572-1_46
39.
Komsuoglu
,
H.
,
2009
, “
Dynamic Legged Mobility—An Overview
,”
International Joint Robotics Conference and Workshop
, p.
1
.
40.
Koepl
,
D.
, and
Hurst
,
J.
,
2011
, “
Force Control for Planar Spring–Mass Running
,”
Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
3758
3763
.10.1109/IROS.2011.6095001
41.
Mordatch
,
I.
,
Lasa
,
M.
, and
Hertzmann
,
A.
,
2010
, “
Robust Physics-Based Locomotion Using Low-Dimensional Planning
,”
ACM Trans. Graphics
,
29
(
3
), p. 71.10.1145/1778765.1778808
42.
Kenwright
,
B.
,
Davison
,
R.
, and
Morgan
,
G.
,
2011
, “
Dynamic Balancing and Walking for Real-Time 3D Characters
,”
4th International Conference on Motion in Games
, pp.
63
73
.10.1007/978-3-642-25090-3_6
43.
Kenwright
,
B.
,
2012
, “
Responsive Biped Character Stepping: When Push Comes to Shove
,”
Cyberworlds 2012
, Darmstadt, Sept. 25–27, pp.
151
156
.10.1109/CW.2012.28
44.
Kenwright
,
B.
, and
Huang
,
C.
,
2013
, “
Beyond Keyframe Animations: A Controller Character-Based Stepping Approach
,” 2013
ACM SIGGRAPH
Asia Technical Briefs, pp.
10:1
10:4
.10.1145/2542355.2542368
45.
Kwon
,
T.
, and
Hodgins
,
J.
,
2010
, “
Control Systems for Human Running Using an Inverted Pendulum Model and a Reference Motion Capture Sequence
,”
2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
, pp.
129
138
.
46.
Seipel
,
J.
, and
Holmes
,
P.
,
2007
, “
A Simple Model for Clock-Actuated Legged Locomotion
,”
Regular Chaotic Dyn.
,
12
(
5
), pp.
502
520
.10.1134/S1560354707050048
47.
Spence
,
A.
,
Revzen
,
S.
,
Seipel
,
J.
,
Mullens
,
C.
, and
Full
,
R.
,
2010
, “
Insects Running on Elastic Surfaces
,”
J. Exp. Biol.
,
213
(
11
), pp.
1907
1920
.10.1242/jeb.042515
48.
Maus
,
H.
,
Rummel
,
J.
, and
Seyfarth
,
A.
,
2008
, “
Stable Upright Walking and Running Using a Simple Pendulum Based Control Scheme
,”
International Conference of Climbing and Walking Robots 2008
, pp.
623
629
.10.1142/9789812835772_0075
49.
Shen
,
Z. H.
, and
Seipel
,
J. E.
,
2012
, “
A Fundamental Mechanism of Legged Locomotion With Hip Torque and Leg Damping
,”
Bioinspiration Biomimetics
,
7
(
4
), p.
046010
.10.1088/1748-3182/7/4/046010
50.
Sreenath
,
K.
,
Park
,
H.
,
Poulakakis
,
I.
, and
Grizzle
,
J.
,
2013
, “
Embedding Active Force Control Within the Compliant Hybrid Zero Dynamics to Achieve Stable, Fast Running on MABEL
,”
Int. J. Rob. Res.
,
32
(
3
), pp.
324
345
.10.1177/0278364912473344
51.
Larson
,
P.
, and
Seipel
,
J.
,
2012
, “
Analysis of a Spring-Loaded Inverted Pendulum Locomotion Model With Radial Forcing
,”
ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, pp.
877
883
.
52.
Ankaralı
,
M.
, and
Saranli
,
U.
,
2010
, “
Stride-to-Stride Energy Regulation for Robust Self-Stability of a Torque-Actuated Dissipative Spring–Mass Hopper
,”
Chaos
,
20
(
3
), p.
033121
.10.1063/1.3486803
53.
Ghigliazza
,
R.
,
Altendorfer
,
R.
,
Holmes
,
P.
, and
Koditschek
,
D.
,
2003
, “
A Simply Stabilized Running Model
,”
SIAM J. Appl. Dyn. Syst.
,
2
(
2
), pp.
187
218
.10.1137/S1111111102408311
54.
Arslan
,
O.
,
Ankaralı
,
M.
, and
Morgül
,
O.
,
2010
, “
Approximate Analytic Solutions to Non-Symmetric Stance Trajectories of the Passive Spring-Loaded Inverted Pendulum With Damping
,”
Nonlinear Dyn.
,
62
(
4
), pp.
729
742
.
55.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2005
, “
Spring–Mass Running: Simple Approximate Solution and Application to Gait Stability
,”
J. Theor. Biol.
,
232
(
3
), pp.
315
328
.10.1016/j.jtbi.2004.08.015
56.
Schwind
,
W.
, and
Koditschek
,
D.
,
2000
, “
Approximating the Stance Map of a 2-DOF Monoped Runner
,”
J. Nonlinear Sci.
,
10
(
5
), pp.
533
568
.10.1007/s004530010001
57.
Robilliard
,
J.
, and
Wilson
,
A.
,
2005
, “
Prediction of Kinetics and Kinematics of Running Animals Using an Analytical Approximation to the Planar Spring–Mass System
,”
J. Exp. Biol.
,
208
(
Pt. 23
), pp.
4377
4389
.10.1242/jeb.01902
58.
Arslan
,
O.
,
Saranli
,
U.
, and
Morgül
,
O.
,
2009
, “
An Approximate Stance Map of the Spring Mass Hopper With Gravity Correction for Nonsymmetric Locomotions
,”
IEEE International Conference on Robotics and Automation
,
ICRA '09
, Kobe, Japan, May 12–17, pp.
2388
2393
.10.1109/ROBOT.2009.5152470
59.
Altendorfer
,
R.
,
Koditschek
,
D.
, and
Holmes
,
P.
,
2004
, “
Stability Analysis of Legged Locomotion Models by Symmetry-Factored Return Maps
,”
Int. J. Rob. Res.
,
23
, pp.
10
11
.10.1177/0278364904047389
60.
Pedotti
,
A.
,
1977
, “
A Study of Motor Coordination and Neuromuscular Activities in Human Locomotion
,”
Biol. Cybern.
,
26
(
1
), pp.
53
62
.10.1007/BF00363992
61.
Lulic
,
T.
, and
Muftic
,
O.
,
2002
, “
Trajectory of the Human Body Mass Center During Walking at Different Speed
,”
International Design Conference
, pp.
797
802
.
62.
Strogatz
,
S.
,
2001
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry: Engineering (Studies in Nonlinearity)
,
Westview Press
,
Boulder, CO
.
You do not currently have access to this content.