A mechanics-based model of flexible needle insertion into soft tissue is presented in this paper. Different from the existing kinematic model, a new model has been established based on the quasi-static principle, which also incorporates the dynamics of needle motions. In order to increase the accuracy of the model, nonlinear characteristics of the flexible needle and the soft tissue are both taken into account. The nonlinear Winkler foundation model and the modified Euler–Bernoulli theory are applied in this study, providing a theoretical framework to study insertion and deformation of needles. Galerkin method and iteration cycle analysis are applied in solving a series of deformation control equations to obtain the needle deflection. The parameters used in the mechanics-based model are obtained from the needle force and needle insertion experiment. Sensitivity studies show that the model can respond reasonably to changes in response to variations in different parameters. A 50 mm needle insertion simulation and a 50 mm corresponding needle insertion experiment are conducted to prove the validity of the model. At last, a study on different needle tip bevel demonstrates that the mechanics-based model can precisely predict the needle deflection when more than one parameter is changed. The solution can also be used in optimizing trajectory of the needle tip, enabling the needle to reach the target without touching important physiological structures such as blood vessels with the help of dynamic trajectory planning.

References

References
1.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallem
,
M.
,
2007
, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
,
29
(
4
), pp.
413
431
.10.1016/j.medengphy.2006.07.003
2.
Park
,
W.
,
Wang
,
Y.
, and
Chirikjian
,
G. S.
,
2009
, “
Path Planning for Flexible Needles Using Second Order Error Propagation
,”
International Workshop on Algorithmic Foundations of Robotics
,
Guanajuato
,
Mexico
, pp.
583
595
.10.1007/978-3-642-00312-7_36
3.
Kallem
,
V.
, and
Cowan
,
N. J.
,
2009
, “
Image Guidance of Flexible Tip-Steerable Needles
,”
IEEE Trans. Robot.
,
25
(
1
), pp.
191
196
.10.1109/TRO.2008.2010357
4.
Park
,
Y. L.
,
Elayaperumal
,
S.
,
Daniel
,
B.
,
Ryu
,
S. C.
,
Shin
,
M.
,
Savall
,
J.
,
Black
,
R. J.
,
Moslehi
,
B.
, and
Cutkosky
,
M. R.
,
2010
, “
Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions
,”
IEEE ASME Trans. Mech.
,
15
(
6
), pp.
906
915
.10.1109/TMECH.2010.2080360
5.
Majewicz
,
A.
,
Marra
,
S.
,
van Vledder
,
M.
,
Lin
,
M.
,
Choti
,
M.
,
Song
,
D.
, and
Okamura
,
A.
,
2011
, “
Behavior of Tip-Steerable Needles in Ex Vivo and In Vivo Tissue
,”
IEEE Trans. Biomed. Eng.
,
59
(
10
), pp.
2705
2715
.10.1109/TBME.2012.2204749
6.
Misra
,
S.
,
Reed
,
K. B.
,
Schafer
,
B. W.
,
Ramesh
,
K. T.
, and
Okamura
,
A. M.
,
2010
, “
Mechanics of Flexible Needles Robotically Steered Through Soft Tissue
,”
Int. J Robot. Res.
,
29
(
13
), pp.
1640
1660
.10.1177/0278364910369714
7.
Rucker
,
D. C.
,
Jones
,
B. A.
, and
Webster
,
R. J.
,
2010
, “
A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots
,”
IEEE Trans. Robot.
,
26
(
5
), pp.
769
780
.10.1109/TRO.2010.2062570
8.
Ahmadian
,
M. T.
, and
Janabi-Sharifi
,
F.
,
2010
, “
Modeling, Simulation, and Optimal Initiation Planning for Needle Insertion Into the Liver
,”
ASME J. Biomech. Eng.
,
132
(
4
), p.
041001
.10.1115/1.4000953
9.
Avramidis
,
I. E.
, and
Morfidis
,
K.
,
2006
, “
Bending of Beams on Three-Parameter Elastic Foundation
,”
Int J. Solids. Struct.
,
43
(
2
), pp.
357
375
.10.1016/j.ijsolstr.2005.03.033
10.
Taylor
,
R. L.
,
Filippou
,
F. C.
,
Saritas
,
A.
, and
Auricchio
,
F.
,
2003
, “
A Mixed Finite Element Method for Beam and Frame Problems
,”
Comput Mech.
,
31
(
1–2
), pp.
192
203
.10.1007/s00466-003-0410-y
11.
Naidu
,
N. R.
, and
Rao
,
G. V.
,
1995
, “
Stability Behaviour of Uniform Columns on a Class of Two Parameter Elastic Foundation
,”
Comput Struct.
,
57
(
3
), pp.
551
553
.10.1016/0045-7949(94)00636-H
12.
Reddy
,
J. N.
,
2004
,
Nonlinear Finite Element Analysis
,
Oxford University
,
New York
.
13.
Goksel
,
O.
,
Dehghan
,
E.
, and
Salcudean
,
S. E.
,
2009
, “
Modeling and Simulation of Flexible Needles
,”
Med. Eng. Phys.
,
31
(
9
), pp.
1069
1078
.10.1016/j.medengphy.2009.07.007
14.
Omar
,
M. A.
, and
Shabana
,
A. A.
,
2001
, “
A Two-Dimensional Shear Deformable Beam for Large Rotation and Deformation Problems
,”
J. Sound Vib.
,
243
(
3
), pp.
565
576
.10.1006/jsvi.2000.3416
15.
Patel
,
B. P.
,
Ganapathi
,
M.
, and
Touratier
,
M.
,
1999
, “
Nonlinear Free Flexural Vibrations/Post-Buckling Analysis of Laminated Orthotropic Beams/Columns on a Two Parameter Elastic Foundation
,”
Compos. Struct.
,
46
(
2
), pp.
189
196
.10.1016/S0263-8223(99)00054-9
16.
Ansari
,
M.
,
Esmailzadeh
,
E.
, and
Younesian
,
D.
,
2010
, “
Internal-External Resonance of Beams on Non-Linear Viscoelastic Foundation Traversed by Moving Load
,”
Nonlinear Dyn.
,
61
(
1–2
), pp.
163
182
.10.1007/s11071-009-9639-0
17.
Ong
,
R. E.
,
Herrell
,
S. D.
,
Miga
,
M. I.
, and
Galloway
,
R. L.
,
2008
, “
A Kidney Deformation Model for Use in Non-Rigid Registration During Image-Guided Surgery
,”
Proc. SPIE
,
6918
, pp.
W9180
W9180
.10.1117/12.771669
18.
Jiang
,
S.
,
Liu
,
S.
, and
Feng
,
W.
,
2011
, “
PVA Hydrogel Properties for Biomedical Application
,”
J. Mech. Behav. Biomed.
,
4
(
7
), pp.
1228
1233
.10.1016/j.jmbbm.2011.04.005
19.
van Gerwen
,
D. J.
,
Dankelman
,
J.
, and
van den Dobbelsteen
,
J. J.
,
2012
, “
Needle–Tissue Interaction Forces—A Survey of Experimental Data
,”
Med. Eng. Phys.
,
34
(
6
), pp.
665
680
.10.1016/j.medengphy.2012.04.007
20.
Yankelevsky
,
D. Z.
,
Eisenberger
,
M.
, and
Adin
,
M. A.
,
1989
, “
Analysis of Beams on Nonlinear Winkler Foundation
,”
Comput. Struct.
,
31
(
2
), pp.
287
292
.10.1016/0045-7949(89)90232-0
21.
Mozer
,
P. C.
,
Partin
,
A. W.
, and
Stoianovici
,
D.
,
2009
, “
Robotic Image-Guided Needle Interventions of the Prostate
,”
Rev. Urol.
,
11
(
1
), pp.
7
15
.
22.
Jiang
,
S.
,
Li
,
P.
,
Yu
,
Y.
,
Liu
,
J.
, and
Yang
,
Z.
,
2014
, “
Experimental Study of Needle-Tissue Interaction Forces: Effect of Needle Geometries, Insertion Methods and Tissue Characteristics
,”
ASME J. Biomech. Eng.
,
47
(
13
), pp.
3344
3353
.10.1016/j.jbiomech.2014.08.007
You do not currently have access to this content.