This paper investigates the control and synchronization of a rotational relativistic chaotic system with parameter uncertainties and external disturbance. By using the proper coordinate transformation, some novel criteria for control or synchronization are proposed via a single input. Numerical simulations are given to show the robustness and efficiency of the proposed approach.

References

References
1.
Yang
,
T.
, and
Chua
,
L. O.
,
1997
, “
Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and Application to Secure Communication
,”
IEEE Trans. Circuits Syst.
,
44
(
10
), pp.
976
988
.10.1109/81.633887
2.
Blasius
,
B.
,
Huppert
,
A.
, and
Stone
,
L.
,
1999
, “
Complex Dynamics and Phase Synchronization in Spatially Extended Ecological Systems
,”
Nature
,
399
, pp.
354
359
.10.1038/20676
3.
Liu
,
X. W.
,
Huang
,
Q. Z.
,
Gao
,
X.
, and
Shao
,
S. Q.
,
2007
, “
Impulsive Control of Chaotic Systems With Exogenous Perturbations
,”
Chin. Phys.
,
16
(
8
), pp.
2272
2277
.10.1088/1009-1963/16/8/019
4.
Li
,
C. L.
,
Su
,
K. L.
, and
Wu
,
L.
,
2013
, “
Adaptive Sliding Mode Control for Synchronization of a Fractional-Order Chaotic System
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(3), p.
031005
.10.1115/1.4007910
5.
Pan
,
L.
,
Zhou
,
L.
, and
Li
,
D. Q.
,
2013
, “
Synchronization of Three-Scroll Unified Chaotic System (TSUCS) and Its Hyper-Chaotic System Using Active Pinning Control
,”
Nonlinear Dyn.
,
73
(
3
), pp.
2059
2071
.10.1007/s11071-013-0922-8
6.
Farivar
,
F.
,
Nekoui
,
M. A.
,
Shoorehdeli
,
M. A.
, and
Teshnehlab
,
M.
,
2012
, “
Modified Projective Synchronization of Chaotic Dissipative Gyroscope Systems Via Backstepping Control
,”
Indian J. Phys.
,
86
(
10
), pp.
901
906
.10.1007/s12648-012-0139-6
7.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2013
, “
Adaptive Finite-Time Synchronization of Non-Autonomous Chaotic Systems With Uncertainty
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(3), p.
031006
.10.1115/1.4023007
8.
Wu
,
Z. G.
, and
Shi
,
P.
,
2013
, “
Sampled-Data Synchronization of Chaotic Lur'e Systems With Time Delays
,”
IEEE Trans. Neural Networks Learn. Syst.
,
24
(
3
), pp.
410
421
.10.1109/TNNLS.2012.2236356
9.
Chen
,
S. H.
,
Wang
,
F.
, and
Wang
,
C. P.
,
2004
, “
Synchronizing Strict-Feedback and General Strict-Feedback Chaotic Systems Via a Single Controller
,”
Chaos, Solitons Fractals
,
20
(
2
), pp.
235
243
.10.1016/S0960-0779(03)00370-9
10.
Wang
,
G. M.
,
2010
, “
Stabilization and Synchronization of Genesio–Tesi System Via Single Variable Feedback Controller
,”
Phys. Lett. A
,
374
(
28
), pp.
2831
2834
.10.1016/j.physleta.2010.05.007
11.
Lu
,
J. Q.
,
Ho
,
D. W. C.
,
Cao
,
J. D.
, and
Kurths
,
J.
,
2013
, “
Single Impulsive Controller for Globally Exponential Synchronization of Dynamical Networks
,”
Nonlinear Anal.: Real World Appl.
,
14
(
1
), pp.
581
593
.10.1016/j.nonrwa.2012.07.018
12.
Carmeli
,
M.
,
1985
, “
Field Theory on R×S3Topology. I: The Klein–Gordon and Schrödinger Equations
,”
Found. Phys.
,
15
(
2
), pp.
175
184
.10.1007/BF00735289
13.
Li
,
H. B.
,
Wang
,
B. H.
,
Zhang
,
Z. Q.
,
Liu
,
S.
, and
Li
,
Y. S.
,
2012
, “
Combination Resonance Bifurcations and Chaos of Some Nonlinear Relative Rotation System
,”
Acta Phys. Sin
,
61
(
9
), p.
094501
(in Chinese).10.7498/aps.61.094501
14.
Meng
,
Z.
,
Fu
,
L. Y.
, and
Song
,
M. H.
,
2013
, “
Bifurcation of a Kind of Nonlinear-Relative Rotational System With Combined Harmonic Excitation
,”
Acta Phys. Sin
,
62
, p.
054501
(in Chinese).10.7498/aps.62.054501
15.
Liu
,
S.
,
Zhao
,
S. S.
,
Sun
,
B. P.
, and
Zhang
,
W. M.
,
2014
, “
Bifurcation and Chaos Analysis of a Nonlinear Electromechanical Coupling Relative Rotation System
,”
Chin. Phys.
,
23
(
9
), p.
094501
.10.1088/1674-1056/23/9/094501
16.
Luo
,
R. Z.
, and
He
,
L. M.
,
2014
, “
The Control and Modified Projective Synchronization of a Class of 2,3,4-Dimensional (Chaotic) Systems With Parameter and Model Uncertainties and External Disturbances Via Adaptive Control
,”
Chin. J. Phys.
,
52
, pp.
830
851
.10.6122/CJP.52.830
You do not currently have access to this content.