In this manuscript, a new method is introduced for solving multi-order fractional differential equations. By transforming the fractional differential equations into an optimization problem and using polynomial basis functions, we obtain the system of algebraic equation. Then, we solve the system of nonlinear algebraic equation and obtain the coefficients of polynomial expansion. Also, we show the convergence of the method. Some numerical examples are presented which illustrate the theoretical results and the performance of the method.

References

References
1.
Gelfand
,
I. M.
, and
Fomin
,
S. V.
,
1963
,
Calculus of Variations
,
Prentice–Hall
, Englewood Cliffs, NJ.
2.
Băleanu
,
D.
,
Diethelm
,
K.
,
Scalas
,
E.
, and
Trujillo
,
J. J.
,
2012
, Fractional Calculus Models and Numerical Methods (
Series on Complexity, Nonlinearity and Chaos
),
World Scientific
,
Boston
.10.1142/9789814355216
3.
Shuqin
,
Z.
,
2006
, “
Existence of Solution for Boundary Value Problem of Fractional Order
,”
Acta Math. Sci.
26
(2), pp.
220
228
.10.1016/S0252-9602(06)60044-1
4.
Gutierrez
,
R. E.
,
Rosario
,
J. M.
, and
Tenreiro Machado
,
J. A.
, 2010, “
Fractional Order Calculus: Basic Concepts and Engineering Applications
,”
Math. Prob. Eng.
, 2010, p. 375858.10.1155/2010/375858
5.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific Publishing
,
River Edge, NJ
.10.1142/9789812817747
6.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Tenreiro
,
M. J. A.
,
2007
, Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering,
Springer
,
Dordrecht
.10.1007/978-1-4020-6042-7
7.
Tarasov
,
V. E.
,
2013
, “
Review of Some Promising Fractional Physical Models
,”
Int. J. Mod. Phys. B
27
(9), p.
1330005
.10.1142/S0217979213300053
8.
Tarasov
,
V. E.
,
2011
,
Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media
,
Springer
,
New York
.
9.
Lorenzo
,
F.
, and
Hartley
,
T. T.
,
2008
, “
Initialization of Fractional-Order Operators and Fractional Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
3
(
2
), p.
021101
.10.1115/1.2833585
10.
Jafari
,
H.
,
Tajadodi
,
H.
, and
Baleanu
,
D.
,
2014
, “
Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Fractional Evolution Equations
,”
ASME J. Comput. Nonlinear Dyn.
9
(
2
), p.
021019
.10.1115/1.4025770
11.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional Calculus: A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
21
(
5
), pp.
741
748
.10.2514/3.8142
12.
Gaul
,
L.
,
Klein
,
P.
, and
Kempfle
,
S.
,
1989
, “
Impulse Response Function of an Oscillator With Fractional Derivative in Damping Description
,”
Mech. Res. Commun.
16
(
5
), pp.
297
305
.10.1016/0093-6413(89)90067-0
13.
Jafari
,
H.
,
Yousefi
,
S. A.
, and
Firoozjaee
,
M. A.
,
2011
, “
Numerical Solution of Multi-Order Fractional Differential Equations Using Legendre Wavelets
,”
Commun. Fractals Calculus
2
(
1
), pp.
9
16
.
14.
Momani
,
S.
, and
Odibat
,
Z.
,
2006
, “
Analytical Approach to Linear Fractional Partial Differential Equations Arising in Fluid Mechanics
,”
Phys. Lett. A
355
(4–5), pp.
271
279
.10.1016/j.physleta.2006.02.048
15.
Caputo
,
M.
,
1967
, “
Linear Models of Dissipation Whose Q Is Almost Frequency Independent. Part II
,”
J. R. Aust. Soc.
13
(5), pp.
529
539
.10.1111/j.1365-246X.1967.tb02303.x
16.
Luchko
,
Y.
, and
Gorenflo
,
R.
,
1999
, “
An Operational Method for Solving Fractional Differential Equations With the Caputo Derivatives
,”
Acta Math. Vietnamica
24
(
2
), pp.
207
233
.
17.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
, “
Theory and Applications of Fractional Differential Equations
,” in
North–Holland Mathematics Studies
, Vol. 204,
Elsevier Science B.V.
,
Amsterdam
.
18.
Lotfi
,
A.
, and
Yousefi
,
S. A.
,
2013
, “
A Numerical Technique for Solving a Class of Fractional Variational Problems
,”
J. Comput. Appl. Math.
237
(1), pp.
633
643
.10.1016/j.cam.2012.08.005
19.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives Theory and Applications
,
Gordon and Breach
,
New York
.
20.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
,
Academic Press
,
New York
.
21.
Royden
,
H. L.
,
1988
,
Real Analysis
,
3rd ed.
,
Macmillan Publishing Company
, New York.
22.
Momani
,
S.
, and
Odibat
,
Z.
,
2007
, “
Numerical Comparison of Methods for Solving Linear Differential Equations of Fractional Order
,”
Chaos, Solitons Fractals
,
31
(5), pp.
1248
1255
.10.1016/j.chaos.2005.10.068
23.
Jafari
,
H.
,
Yousefi
,
S. A.
,
Firoozjaee
,
M. A.
,
Momani
,
S.
, and
Khalique
,
C. M.
,
2011
, “
Application of Legendre Wavelets for Solving Fractional Differential Equations
,”
Comput. Math. Appl.
62
(3), pp.
1038
1045
.10.1016/j.camwa.2011.04.024
24.
Mujeeb
,
U. R.
, and
Rahmat
,
A. K.
,
2012
, “
A Numerical Method for Solving Boundary Value Problems for Fractional Differential Equations
,”
Appl. Math. Modell.
36
(3), pp.
894
907
.10.1016/j.apm.2011.07.045
You do not currently have access to this content.