Delay differential equations (DDEs) are infinite-dimensional systems, therefore analyzing their stability is a difficult task. The delays can be discrete or distributed in nature. DDEs with distributed delays are referred to as delay integro-differential equations (DIDEs) in the literature. In this work, we propose a method to convert the DIDEs into a system of ordinary differential equations (ODEs). The stability of the DIDEs can then be easily studied from the obtained system of ODEs. By using a space-time transformation, we convert the DIDEs into a partial differential equation (PDE) with a time-dependent boundary condition. Then, by using the Galerkin method, we obtain a finite-dimensional approximation to the PDE. The boundary condition is incorporated into the Galerkin approximation using the Tau method. The resulting system of ODEs will have time-periodic coefficients, provided the coefficients of the DIDEs are time periodic. Thus, we use Floquet theory to analyze the stability of the resulting ODE systems. We study several numerical examples of DIDEs with different kernel functions. We show that the results obtained using our method are in close agreement with those existing in the literature. The theory developed in this work can also be used for the integration of DIDEs. The computational complexity of our numerical integration method is O(t), whereas the direct brute-force integration of DIDE has a computational complexity of O(t2).

References

References
1.
Stépán
,
G.
,
1989
,
Retarded Dynamical Systems: Stability and Characteristic Functions
, Vol.
200
,
Longman Scientific & Technical, Essex
,
UK
.
2.
Païdoussis
,
M.
, and
Li
,
G.
,
1992
, “
Cross-Flow-Induced Chaotic Vibrations of Heat-Exchanger Tubes Impacting on Loose Supports
,”
J. Sound Vib.
,
152
(
2
), pp.
305
326
.10.1016/0022-460X(92)90363-3
3.
De Bedout
,
J.
,
Franchek
,
M.
, and
Bajaj
,
A.
,
1999
, “
Robust Control of Chaotic Vibrations for Impacting Heat Exchanger Tubes in Crossflow
,”
J. Sound Vib.
,
227
(
1
), pp.
183
204
.10.1006/jsvi.1999.2341
4.
Sun
,
J.
,
2004
, “
Delay-Dependent Stability Criteria for Time-Delay Chaotic Systems Via Time-Delay Feedback Control
,”
Chaos, Solitons Fractals
,
21
(
1
), pp.
143
150
.10.1016/j.chaos.2003.10.018
5.
Park
,
J.
, and
Kwon
,
O.
,
2005
, “
A Novel Criterion for Delayed Feedback Control of Time-Delay Chaotic Systems
,”
Chaos, Solitons Fractals
,
23
(
2
), pp.
495
501
.10.1016/j.chaos.2004.05.023
6.
Guan
,
X.
,
Feng
,
G.
,
Chen
,
C.
, and
Chen
,
G.
,
2007
, “
A Full Delayed Feedback Controller Design Method for Time-Delay Chaotic Systems
,”
Phys. D (Amsterdam, Neth.)
,
227
(
1
), pp.
36
42
.10.1016/j.physd.2006.12.009
7.
Insperger
,
T.
, and
Stépán
,
G.
,
2001
, “
Remote Control of Periodic Robot Motion
,” Proceedings of 13th
CISM-FToMM
Symposium on Theory and Practice of Robots and Manipulators (Zakopane, 2000)
,
A.
Morecki
,
G.
Bianchi
, and
C.
Rzymkowsky
, eds.,
Springer
,
Vienna
, pp.
197
204
.10.1007/978-3-7091-2498-7_20
8.
Xu
,
D.
, and
Yang
,
Z.
,
2005
, “
Impulsive Delay Differential Inequality and Stability of Neural Networks
,”
J. Math. Anal. Appl.
,
305
(
1
), pp.
107
120
.10.1016/j.jmaa.2004.10.040
9.
Takács
,
D.
,
Orosz
,
G.
, and
Stépán
,
G.
,
2009
, “
Delay Effects in Shimmy Dynamics of Wheels With Stretched String-Like Tyres
,”
Eur. J. Mech.-A/Solids
,
28
(
3
), pp.
516
525
.10.1016/j.euromechsol.2008.11.007
10.
Takács
,
D.
,
Stépán
,
G.
, and
Hogan
,
S.
,
2008
, “
Isolated Large Amplitude Periodic Motions of Towed Rigid Wheels
,”
Nonlinear Dyn.
,
52
(
1–2
), pp.
27
34
.10.1007/s11071-007-9253-y
11.
Stépán
,
G
.,
1999
, “
Delay, Nonlinear Oscillations and Shimmying Wheels
,”
IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics
,
Springer
,
New York
, pp.
373
386
.
12.
Safonov
,
L.
,
Tomer
,
E.
,
Strygin
,
V.
,
Ashkenazy
,
Y.
, and
Havlin
,
S.
,
2002
, “
Multifractal Chaotic Attractors in a System of Delay-Differential Equations Modeling Road Traffic
,”
Chaos
,
12
(
4
), pp.
1006
1014
.10.1063/1.1507903
13.
Orosz
,
G.
, and
Stépán
,
G.
,
2006
, “
Subcritical Hopf Bifurcations in a Car-Following Model With Reaction-Time Delay
,”
Proc. R. Soc. A
,
462
(
2073
), pp.
2643
2670
.10.1098/rspa.2006.1660
14.
Khasawneh
,
F. A.
,
Mann
,
B. P.
,
Insperger
,
T.
, and
Stépán
,
G.
,
2009
, “
Increased Stability of Low-Speed Turning Through a Distributed Force and Continuous Delay Model
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
4
), p.
041003
.10.1115/1.3187153
15.
Crisci
,
M.
,
Kolmanovskii
,
V.
,
Russo
,
E.
, and
Vecchio
,
A.
,
1995
, “
Stability of Continuous and Discrete Volterra Integro-Differential Equations by Liapunov Approach
,”
J. Int. Equations Appl.
,
7
(
4
), pp.
393
411
.10.1216/jiea/1181075895
16.
Brunner
,
H.
, and
Lambert
,
J.
,
1974
, “
Stability of Numerical Methods for Volterra Integro-Differential Equations
,”
Computing
,
12
(
1
), pp.
75
89
.10.1007/BF02239501
17.
Linz
,
P.
,
1969
, “
Linear Multistep Methods for Volterra Integro-Differential Equations
,”
J. Assoc. Comput. Mach.
,
16
(
2
), pp.
295
301
.10.1145/321510.321521
18.
Matthys
,
J.
,
1976
, “
A-Stable Linear Multistep Methods for Volterra Integro-Differential Equations
,”
Numerische Math.
,
27
(
1
), pp.
85
94
.10.1007/BF01399087
19.
Koto
,
T.
,
2002
, “
Stability of Runge–Kutta Methods for Delay Integro-Differential Equations
,”
J. Comput. Appl. Math.
,
145
(
2
), pp.
483
492
.10.1016/S0377-0427(01)00596-9
20.
Zhang
,
C.
, and
Vandewalle
,
S.
,
2004
, “
Stability Analysis of Rung–Kutta Methods for Nonlinear Volterra Delay-Integro-Differential Equations
,”
IMA J. Num. Anal.
,
24
(
2
), pp.
193
214
.10.1093/imanum/24.2.193
21.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Num. Methods Eng.
,
55
(
5
), pp.
503
518
.10.1002/nme.505
22.
Insperger
,
T.
,
Stépán
,
G.
, and
Turi
,
J.
,
2008
, “
On the Higher-Order Semi-Discretizations for Periodic Delayed Systems
,”
J. Sound Vib.
,
313
(
1
), pp.
334
341
.10.1016/j.jsv.2007.11.040
23.
Khasawneh
,
F. A.
, and
Mann
,
B. P.
,
2011
, “
Stability of Delay Integro-Differential Equations Using a Spectral Element Method
,”
Math. Comput. Model.
,
54
(
9
), pp.
2493
2503
.10.1016/j.mcm.2011.06.009
24.
Torkamani
,
S.
,
Butcher
,
E. A.
, and
Khasawneh
,
F. A.
,
2013
, “
Parameter Identification in Periodic Delay Differential Equations With Distributed Delay
,”
Commun. Nonlinear Sci. Num. Simul.
,
18
(
4
), pp.
1016
1026
.10.1016/j.cnsns.2012.09.001
25.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
,
2014
, “
Pseudospectral Methods for Stability Analysis of Delayed Dynamical Systems
,”
Int. J. Dyn. Control
,
2
(
2
), pp.
143
153
.10.1007/s40435-013-0041-x
26.
Wei
,
F.
,
Bachrathy
,
D.
,
Orosz
,
G.
, and
Ulsoy
,
A. G.
,
2014
, “
Spectrum Design Using Distributed Delay
,”
Int. J. Dyn. Control
,
2
(
2
), pp.
234
246
.10.1007/s40435-014-0068-7
27.
Sadath
,
A.
, and
Vyasarayani
,
C. P.
, “
Galerkin Approximations for Stability of Delay Differential Equations With Time periodic Delays
,”
ASME J. Comput. Nonlinear Dyn.
(accepted).10.1115/1.4028631
28.
Sadath
,
A.
, and
Vyasarayani
,
C. P.
,
2015
, “
Galerkin Approximations for Stability of Delay Differential Equations With Time Periodic Coefficients
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), pp.
1
14
.10.1115/1.4026989
29.
Vyasarayani
,
C.
,
Subhash
,
S.
, and
Kalmár-Nagy
,
T.
,
2014
, “
Spectral Approximations for Characteristic Roots of Delay Differential Equations
,”
Int. J. Dyn. Control
,
2
(
2
), pp.
126
132
.10.1007/s40435-014-0060-2
30.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley-VCH
,
Germany
.
31.
Boyd
,
J. P.
,
2001
,
Chebyshev and Fourier Spectral Methods
,
Courier Dover Publications
,
New York
.
32.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Stability Chart for the Delayed Mathieu Equation
,”
Proc. R. Soc. London, Ser. A
,
458
(
2024
), pp.
1989
1998
.10.1098/rspa.2001.0941
33.
Singh
,
S. J.
, and
Chatterjee
,
A.
,
2006
, “
Galerkin Projections and Finite Elements for Fractional Order Derivatives
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
183
206
.10.1007/s11071-005-9002-z
You do not currently have access to this content.