This paper deals with the adaptive control of fractional-order micro-electro-mechanical resonator system (FOMEMRS) with nonsymmetric dead-zone nonlinear input. The slope parameters of the dead-zone nonlinearity are unmeasured and the parameters of the controlled systems are assumed to be unknown in advance. To deal with these unknown parameters, some fractional versions of parametric update laws are proposed. On the basis of the frequency distributed model of fractional integrator and Lyapunov stability theory, a robust control law is designed to prove the stability of the closed-loop system. The proposed adaptive approach requires only the information of bounds of the dead-zone slopes and treats the time-varying input coefficient as a system uncertainty. Finally, simulation examples are given to verify the robustness and effectiveness of the proposed control scheme.

References

References
1.
Mestrom
,
R. M. C.
,
Fey
,
R. H. B.
,
van Beek
,
J. T. M.
,
Phan
,
K. L.
, and
Nijmeijer
,
H.
,
2008
, “
Modeling the Dynamics of a MEMS Resonator: Simulations and Experiments
,”
Sens. Actuators, A
,
142
(
1
), pp.
306
315
.10.1016/j.sna.2007.04.025
2.
Younis
,
M. I.
, and
Nayfeh
,
A. H.
,
2003
, “
A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation
,”
Nonlinear Dyn.
,
31
(
1
), pp.
91
117
.10.1023/A:1022103118330
3.
Braghin
,
F.
,
Resta
,
F.
,
Leo
,
E.
, and
Spinola
,
G.
,
2007
, “
Nonlinear Dynamics of Vibrating MEMS
,”
Sens. Actuators, A
,
134
(
1
), pp.
98
108
.10.1016/j.sna.2006.10.041
4.
Barry
,
E.
,
De
,
M.
,
Butterfield
,
E.
,
Moehlis
,
J.
, and
Turner
,
K.
,
2007
, “
Chaos for a Microelectromechanical Oscillator Governed by the Nonlinear Mathieu Equation
,”
J. Microelectromech. Syst.
,
16
(
6
), pp.
1314
1323
.10.1109/JMEMS.2007.906757
5.
Chavarette
,
F. R.
,
Balthazar
,
J. M.
,
Felix
,
J. L. P.
, and
Rafikov
,
M.
,
2009
, “
A Reducing of a Chaotic Movement to a Periodic Orbit, of a Micro-Electro-Mechanical System, by Using an Optimal Linear Control Design
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
5
), pp.
1844
1853
.10.1016/j.cnsns.2008.09.003
6.
Liu
,
S.
,
Davidson
,
A.
, and
Lin
,
Q.
,
2004
, “
Simulation Studies on Nonlinear Dynamics and Chaos in a MEMS Cantilever Control System
,”
J. Micromech. Microeng.
,
14
(
7
), pp.
1064
1073
.10.1088/0960-1317/14/7/029
7.
Yau
,
H. T.
,
Wang
,
C. C.
,
Hsieh
,
C. T.
, and
Cho
,
C. C.
,
2011
, “
Nonlinear Analysis and Control of the Uncertain Micro-Electro-Mechanical System by Using a Fuzzy Sliding Mode Control Design
,”
Comput. Math. Appl.
,
61
(
8
), pp.
1912
1916
.10.1016/j.camwa.2010.07.019
8.
Aghababa
,
M. P.
,
2012
, “
Chaos in a Fractional-Order Micro-Electro-Mechanical Resonator and Its Suppression
,”
Chin. Phys. B
,
21
(
10
), p.
100505
.10.1088/1674-1056/21/10/100505
9.
Yang
,
C. C.
, and
Qu
,
C. J.
,
2013
, “
Adaptive Terminal Sliding Mode Control Subject to Input Nonlinearity for Synchronization of Chaotic Gyros
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
3
), pp.
682
691
.10.1016/j.cnsns.2012.07.012
10.
Abooee
,
A.
, and
Haeri
,
M.
,
2013
, “
Stabilisation of Commensurate Fractional-Order Polytopic Nonlinear Differential Inclusion Subject to Input Nonlinearity and Unknown Disturbances
,”
IET Control Theory Appl.
,
7
(
12
), pp.
1624
1633
.10.1049/iet-cta.2013.0038
11.
Roohi
,
M.
,
Aghababa
,
M. P.
, and
Haghighi
,
A. R.
, “
Switching Adaptive Controllers to Control Fractional-Order Complex Systems With Unknown Structure and Input Nonlinearities
,” Complexity (to be published).
12.
Aghababa
,
M. P.
, and
Hashtarkhani
,
B.
, “
Synchronization of Unknown Uncertain Chaotic Systems Via Adaptive Control Method
,”
J. Comput. Nonlinear Dyn.
137
(
5
), p.
051004
10.1115/1.4027976.
13.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2011
, “
A Lyapunov Approach to the Stability of Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
437
445
.10.1016/j.sigpro.2010.04.024
14.
Yu
,
J.
,
Hu
,
C.
,
Jiang
,
H. J.
, and
Fan
,
X. L.
,
2014
, “
Projective Synchronization for Fractional Neural Networks
,”
Neural Networks
,
49
, pp.
87
95
.10.1016/j.neunet.2013.10.002
15.
Haghighi
,
H. H.
, and
Markazi
,
A. H. D.
,
2010
, “
Chaos Prediction and Control in MEMS Resonators
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
10
), pp.
3091
3099
.10.1016/j.cnsns.2009.10.002
16.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
State Variables and Transients of Fractional Order Differential Systems
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3117
3140
.10.1016/j.camwa.2012.03.099
17.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
Transients of Fractional-Order Integrator and Derivatives
,”
Signal Image Video Process.
,
6
(
3
), pp.
359
372
.10.1007/s11760-012-0332-2
18.
Trigeassou
,
J. C.
, and
Maamri
,
N.
,
2011
, “
Initial Conditions and Initialization of Linear Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
427
436
.10.1016/j.sigpro.2010.03.010
19.
Yuan
,
J.
,
Shi
,
B.
, and
Ji
,
W. Q.
,
2013
, “
Adaptive Sliding Mode Control of a Novel Class of Fractional Chaotic Systems
,”
Adv. Math. Phys.
,
2013
, p.
576709
.
20.
Zhang
,
R. X.
, and
Yang
,
S. P.
,
2012
, “
Robust Chaos Synchronization of Fractional-Order Chaotic Systems With Unknown Parameters and Uncertain Perturbations
,”
Nonlinear Dyn.
,
69
(
3
), pp.
983
992
.10.1007/s11071-011-0320-z
21.
Chen
,
L. P.
,
Qu
,
J. F.
,
Chai
,
Y.
,
Wu
,
R. C.
, and
Qi
,
G. Y.
,
2013
, “
Synchronization of a Class of Fractional-Order Chaotic Neural Networks
,”
Entropy
,
15
(
8
), pp.
3265
3276
.10.3390/e15083355
22.
Wei
,
Q.
,
Wang
,
X. Y.
, and
Hu
,
X. P.
, “
Feedback Chaotic Synchronization of a Complex Chaotic System With Disturbances
,”
J. Vib. Control
(to be published).
23.
Chen
,
D. Y.
,
Liu
,
Y. X.
,
Ma
,
X. Y.
, and
Zhang
,
R. F.
,
2012
, “
Control of a Class of Fractional-Order Chaotic Systems Via Sliding Mode
,”
Nonlinear Dyn.
,
67
(
1
), pp.
893
901
.10.1007/s11071-011-0002-x
24.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Machado
,
J.
,
2007
,
Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering
,
Springer-Verlag
,
Berlin, Germany
.
25.
Sabatier
,
J.
,
Farges
,
C.
, and
Oustaloup
,
A.
,
2014
, “
On Fractional Systems State Space Description
,”
J. Vib. Control
,
20
(
7
), pp.
1076
1084
.10.1177/1077546313481839
26.
Sabatier
,
J.
,
Farges
,
C.
,
Merveillaut
,
M.
, and
Feneteau
,
L.
,
2012
, “
On Observability and Pseudo State Estimation of Fractional Order Systems
,”
Eur. J. Control
,
18
(
3
), pp.
260
271
.10.3166/ejc.18.260-271
27.
Hu
,
Q. L.
,
Ma
,
G. F.
, and
Xie
,
L. H.
,
2008
, “
Robust and Adaptive Variable Structure Output Feedback Control of Uncertain Systems With Input Nonlinearity
,”
Automatica
,
44
(
2
), pp.
552
559
.10.1016/j.automatica.2007.06.024
28.
Noroozi
,
N.
,
Roopaei
,
M.
,
Karimaghaee
,
P.
, and
Safavi
,
A. A.
,
2010
, “
Simple Adaptive Variable Structure Control for Unknown Chaotic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
3
), pp.
707
727
.10.1016/j.cnsns.2009.04.036
29.
Liu
,
L. P.
,
Pu
,
J. X.
,
Song
,
X. N.
,
Fu
,
Z. M.
, and
Wang
,
X. H.
,
2014
, “
Adaptive Sliding Mode Control of Uncertain Chaotic Systems With Input Nonlinearity
,”
Nonlinear Dyn.
,
76
(
4
), pp.
1857
1865
.10.1007/s11071-013-1163-6
You do not currently have access to this content.