Pitch motion of a gravity gradient satellite in an elliptical orbit is studied. The cell mapping method is employed to find periodic solutions and analyze the global behavior of the system. Stability characteristics of the solutions are established using a point mapping approximation algorithm. The proposed approach does not depend on existence of a small parameter and, therefore, no limitations are imposed on the magnitudes of eccentricity or amplitude of motion. This is in contrast to the perturbation based approaches that require assumptions of small orbital eccentricity and small motion. As a result, stable periodic solutions of twice and three times the orbital period are found for some different eccentricities and inertia parameters. Global behavior and evolution of periodic solutions are also demonstrated using invariant surfaces and bifurcation diagrams.

References

References
1.
NASA
,
1969
, “
Spacecraft Gravitational Torques
,” NASA Report No. SP-8024.
2.
Hughes
,
P. C.
,
1986
,
Spacecraft Attitude Dynamics
,
Wiley
,
New York
.
3.
Baker
,
R. M. L.
,
1960
, “
Librations on a Slightly Eccentric Orbit
,”
ARS J.
,
30
(
1
), pp.
124
126
.
4.
Schechter
,
H. B.
,
1963
, “
Satellite Librations on an Elliptic Orbit
,” Rand Corp., Report No. RM-3632-PR.
5.
Schechter
,
H. B.
,
1964
, “
Dumbbell Librations in Elliptic Orbits
,”
AIAA J.
,
2
(
6
), pp.
1000
1003
.10.2514/3.2489
6.
Beletskii
,
V. V.
,
1965
,
The Satellite Motion About Center of Mass
,
Publishing House Science
,
Moscow, Russia
.
7.
Modi
,
V. J.
, and
Brereton
,
R. C.
,
1969
, “
Periodic Solutions Associated With the Gravity-Gradient-Oriented System: Part 1. Analytical and Numerical Determination
,”
AIAA J.
,
7
(
7
), pp.
1217
1225
.
8.
Zlatoustov
,
V. A.
,
Okhotsimsky
,
D. E.
,
Sarychev
,
V. A.
, and
Torzhesky
,
A. P.
,
1964
, “
Investigation of a Satellite Oscillations in the Plane of an Elliptic Orbit
,”
The Eleventh International Congress of Applied Mechanics
,
Munich, Germany
, pp.
436
439
.
9.
Modi
,
V. J.
, and
Brereton
,
R. C.
,
1969
, “
Periodic Solutions Associated With the Gravity-Gradient-Oriented System: Part 2. Stability Analysis
,”
AIAA J.
,
7
(
8
), pp.
1465
1468
.10.2514/3.5416
10.
Sarychev
,
V. A.
,
Sazonov
,
V. V.
, and
Zlatoustov
,
V. A.
,
1977
, “
Periodic Oscillations of a Satellite in the Plane of an Elliptic Orbit
,”
Kosmicheskie Issledovaniya
15
(
6
), pp.
809
834
(Russian);
Cosmic Res.
,
15
(
6
), pp.
698
719
(English).
11.
Tong
,
X.
, and
Rimrott
,
F.
,
1991
, “
Numerical Studies on Chaotic Planar Motion of Satellite in an Elliptic Orbit
,”
Chaos Solitons Fractals
,
1
(
2
), pp.
179
186
.10.1016/0960-0779(91)90007-V
12.
Karasopoulos
,
H. A.
,
1994
, “
Nonlinear Dynamics of the Planar Pitch Attitude Motion for a Gravity-Gradient Satellite
,” Ph.D. thesis, University of Cincinnati, Cincinnati, OH.
13.
Kirchgraber
,
U.
,
Manz
,
U.
, and
Stoffer
,
D.
,
2000
, “
Rigorous Proof of Chaotic Behaviour in a Dumbbell Satellite Model
,”
J. Math. Anal. Appl.
,
251
(
2
), pp.
897
911
.10.1006/jmaa.2000.7143
14.
Stabb
,
M. C.
, and
Gray
,
G. L.
,
1994
, “
Chaos in Controlled, Gravity Gradient Satellite Pitch Dynamics Via the Method of Melnikov—Saddle Stabilization
,”
AIAA
Paper No. AIAA-94-1671.10.2514/6.AIAA-94-1671
15.
Fujii
,
H. A.
,
Ichiki
,
W.
,
Suda
,
S.
, and
Watanabe
,
T. R.
,
2000
, “
Chaos Analysis on Librational Control of Gravity-Gradient Satellite in Elliptic Orbit
,”
J. Guid. Control Dyn.
,
23
(
1
), pp.
145
146
.10.2514/2.4500
16.
Flashner
,
H.
, and
Hsu
,
C. S.
,
1983
, “
A Study of Nonlinear Periodic Systems Via the Point Mapping Method
,”
Int. J. Numer. Methods Eng.
,
19
(
2
), pp.
185
215
.10.1002/nme.1620190204
17.
Hsu
,
C. S.
,
1980
, “
A Theory of Cell-to-Cell Mapping Dynamical Systems
,”
ASME J. Appl. Mech.
,
47
(
4
), pp.
931
939
.10.1115/1.3153816
18.
Hsu
,
C. S.
,
1980
, “
An Unravelling Algorithm for Global Analysis of Dynamical Systems: An Application of Cell-to-Cell Mappings
,”
ASME J. Appl. Mech.
,
47
(
4
), pp.
940
948
.10.1115/1.3153817
19.
Bate
,
R. R.
,
Mueller
,
D.
, and
White
,
J. E.
,
1971
,
Fundamentals of Astrodynamics
,
Dover
Publications, New York.
20.
Flashner
,
H.
, and
Guttalu
,
R. S.
,
1989
, “
Analysis of Non-Linear Non-Autonomous Systems by Truncated Point Mappings
,”
Int. J. Nonlinear Mech.
,
24
(
4
), pp.
327
344
.10.1016/0020-7462(89)90049-8
21.
Guttalu
,
R. S.
, and
Flashner
,
H.
,
1996
, “
Stability Analysis of Periodic Systems by Truncated Point Mapping
,”
J. Sound Vib.
,
189
(
1
), pp.
33
54
.10.1006/jsvi.1996.0004
22.
Hsu
,
C. S.
,
1977
, “
On Non-Linear Parametric Excitation Problems
,”
Adv. Appl. Mech.
,
17
, pp.
245
301
.10.1016/S0065-2156(08)70222-9
23.
Golat
,
M.
, and
Flashner
,
H.
,
2002
, “
A New Methodology for the Analysis of Periodic Systems
,”
Nonlinear Dyn.
,
28
(
1
), pp.
29
51
.10.1023/A:1014930903197
24.
Zlatoustov
,
V. A.
, and
Markeev
,
A. P.
,
1973
, “
Stability of Planar Oscillations of a Satellite in an Elliptic Orbit
,”
Celestial Mech.
,
7
(
1
), pp.
31
45
.10.1007/BF01243507
You do not currently have access to this content.