In this paper, a novel lattice model on a single-lane gradient road is proposed with the consideration of relative current. The stability condition is obtained by using linear stability theory. It is shown that the stability of traffic flow on the gradient road varies with the slope and the sensitivity of response to the relative current: when the slope is constant, the stable region increases with the increasing of the sensitivity of response to the relative current; when the sensitivity of response to the relative current is constant, the stable region increases with the increasing of the slope in uphill and decreases with the increasing of the slope in downhill. A series of numerical simulations show a good agreement with the analytical result and show that the sensitivity of response to the relative current is better than the slope in stabilizing traffic flow and suppressing traffic congestion. By using nonlinear analysis, the Burgers, Korteweg–de Vries (KdV), and modified Korteweg–de Vries (mKdV) equations are derived to describe the triangular shock waves, soliton waves, and kink–antikink waves in the stable, metastable, and unstable region, respectively, which can explain the phase transitions from free traffic to stop-and-go traffic, and finally to congested traffic. One conclusion is drawn that the traffic congestion on the gradient road can be suppressed efficiently by introducing the relative velocity.

References

References
1.
Kerner
,
B. S.
, and
Konhäuser
,
P.
,
1993
, “
Cluster Effect in Initially Homogeneous Traffic Flow
,”
Phys. Rev. E
,
48
(
4
), pp.
R2335
R2338
.10.1103/PhysRevE.48.R2335
2.
Bando
,
M.
,
Hasebe
,
K.
, and
Nakayama
,
A.
,
1995
, “
Dynamical Model of Traffic Congestion and Numerical Simulation
,”
Phys. Rev. E
,
51
(
2
), pp.
1035
1042
.10.1103/PhysRevE.51.1035
3.
Helbing
,
D.
, and
Tilch
,
B.
,
1998
, “
Generalized Force Model of Traffic Dynamics
,”
Phys. Rev. E
,
58
(
1
), pp.
133
138
.10.1103/PhysRevE.58.133
4.
Jiang
,
R.
,
Wu
,
Q. S.
, and
Zhu
,
Z. J.
,
2001
, “
Full Velocity Difference Model for a Car-Following Theory
,”
Phys. Rev. E
,
64
(
1
), p.
017101
.10.1103/PhysRevE.64.017101
5.
Yu
,
L.
, and
Shi
,
Z. K.
,
2007
, “
Density Waves in Traffic Flow Model With Relative Velocity
,”
Eur. Phys. J., Part B
,
57
(
1
), pp.
115
120
.10.1140/epjb/e2007-00160-1
6.
Yu
,
L.
,
Li
,
T.
, and
Shi
,
Z. K.
,
2010
, “
Density Waves in a Traffic Flow Model With Reaction-Time Delay
,”
Physica A
,
389
(
13
), pp.
2607
2616
.10.1016/j.physa.2010.03.009
7.
Chen
,
J. Z.
,
Shi
,
Z. K.
, and
Yu
,
L.
,
2014
, “
Nonlinear Analysis of a New Extended Lattice Model With Consideration of Multi-Anticipation and Driver Reaction Delays
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031005
.10.1115/1.4026444
8.
Zhou
,
J.
,
Shi
,
Z. K.
, and
Cao
,
J. L.
,
2014
, “
Nonlinear Analysis of the Optimal Velocity Difference Model With Reaction-Time Delay
,”
Physica A
,
396
(
2
), pp.
77
87
.10.1016/j.physa.2013.11.007
9.
Nagel
,
K.
, and
Schreckenberg
,
M.
,
1992
, “
A Cellular Automaton Model for Freeway Traffic
,”
J. Phys. I
,
2
(
12
), pp.
2221
2229
.10.1051/jp1:1992277
10.
Nagatani
,
T.
,
1998
, “
Modified KdV Equation for Jamming Transition in the Continuum Models of Traffic
,”
Physica A
,
261
(
3
), pp.
599
607
.10.1016/S0378-4371(98)00347-1
11.
Nagatani
,
T.
,
1999
, “
TDGL and MKdV Equations for Jamming Transition in the Lattice Models of Traffic
,”
Physica A
,
264
(
3
), pp.
581
592
.10.1016/S0378-4371(98)00466-X
12.
Nagatani
,
T.
,
1999
, “
Jamming Transition in Traffic Flow on Triangular Lattice
,”
Physica A
,
271
(
1
), pp.
200
221
.10.1016/S0378-4371(99)00196-X
13.
Nagatani
,
T.
,
1999
, “
Jamming Transition in a Two-Dimensional Traffic Flow Model
,”
Phys. Rev. E
,
59
(
5
), pp.
4857
4864
.10.1103/PhysRevE.59.4857
14.
Nagatani
,
T.
,
1999
, “
Jamming Transition of High-Dimensional Traffic Dynamics
,”
Physica A
,
272
(
3
), pp.
592
611
.10.1016/S0378-4371(99)00296-4
15.
Nagatani
,
T.
,
1999
, “
Jamming Transitions and the Modified Korteweg–de Vries Equation in a Two-Lane Traffic Flow
,”
Physica A
,
265
(
1
), pp.
297
310
.10.1016/S0378-4371(98)00563-9
16.
Li
,
Z. P.
,
Li
,
X. L.
, and
Liu
,
F. Q.
,
2008
, “
Stabilization Analysis and Modified KdV Equation of Lattice Models With Consideration of Relative Current
,”
Int. J. Mod. Phys. C
,
19
(
08
), pp.
1163
1173
.10.1142/S0129183108012868
17.
Sun
,
D. H.
,
Tian
,
C.
, and
Liu
,
W. N.
,
2010
, “
A Traffic Flow Lattice Model Considering Relative Current Influence and Its Numerical Simulation
,”
Chin. Phys. B
,
19
(
8
), p.
080514
.10.1088/1674-1056/19/8/080514
18.
Tian
,
J. F.
,
Jia
,
B.
, and
Li
,
X. G.
,
2010
, “
Flow Difference Effect in the Lattice Hydrodynamic Model
,”
Chin. Phys. B
,
19
(
4
), p.
040303
.10.1088/1674-1056/19/4/040303
19.
Zhu
,
W. X.
,
2008
, “
A Backward-Looking Optimal Current Lattice Model
,”
Commun. Theor. Phys.
,
50
(
3
), pp.
753
756
.10.1088/0253-6102/50/3/46
20.
Ge
,
H. X.
, and
Cheng
,
R. J.
,
2008
, “
The “Backward Looking” Effect in the Lattice Hydrodynamic Model
,”
Physica A
,
387
(
28
), pp.
6952
6958
.10.1016/j.physa.2008.05.060
21.
Ge
,
H. X.
,
2009
, “
The Korteweg–de Vries Soliton in the Lattice Hydrodynamic Model
,”
Physica A
,
388
(
8
), pp.
1682
1686
.10.1016/j.physa.2008.11.026
22.
Ge
,
H. X.
,
Cheng
,
R. J.
, and
Lei
,
L.
,
2010
, “
The Theoretical Analysis of the Lattice Hydrodynamic Models for Traffic Flow Theory
,”
Physica A
,
389
(
14
), pp.
2825
2834
.10.1016/j.physa.2010.03.007
23.
Li
,
X. L.
,
Li
,
Z. P.
, and
Han
,
X. L.
,
2009
, “
Effect of the Optimal Velocity Function on Traffic Phase Transitions in Lattice Hydrodynamic Models
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
5
), pp.
2171
2177
.10.1016/j.cnsns.2008.06.017
24.
Tian
,
C.
,
Sun
,
D. H.
, and
Yang
,
S. H.
,
2011
, “
A New Lattice Hydrodynamic Traffic Flow Model With a Consideration of Multi-Anticipation Effect
,”
Chin. Phys. B
,
20
(
8
), p.
088902
.10.1088/1674-1056/20/8/088902
25.
Gupta
,
A. K.
, and
Redhu
,
P.
,
2014
, “
Analyses of the Driver's Anticipation Effect in a New Lattice Hydrodynamic Traffic Flow Model With Passing
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1001
1011
.10.1007/s11071-013-1183-2
26.
Cheng
,
R. J.
,
Li
,
Z. P.
, and
Zheng
,
P. J.
,
2014
, “
The Theoretical Analysis of the Anticipation Lattice Models for Traffic Flow
,”
Nonlinear Dyn.
,
76
(
1
), pp.
725
731
.10.1007/s11071-013-1164-5
27.
Peng
,
G. H.
,
Cai
,
X. H.
, and
Cao
,
B. F.
,
2011
, “
Non-Lane-Based Lattice Hydrodynamic Model of Traffic Flow Considering the Lateral Effects of the Lane Width
,”
Phys. Lett. A
,
375
(
30
), pp.
2823
2827
.10.1016/j.physleta.2011.06.021
28.
Peng
,
G. H.
,
Nie
,
F. Y.
, and
Cao
,
B. F.
,
2012
, “
A Drivers Memory Lattice Model of Traffic Flow and Its Numerical Simulation
,”
Nonlinear Dyn.
,
67
(
3
), pp.
1811
1815
.10.1007/s11071-011-0107-2
29.
Yu
,
X.
,
2004
, “
Lattice Models of the Optimal Traffic Current
,”
Acta Phys. Sinica
,
53
(
1
), pp.
25
30
.
30.
Zhu
,
W. X.
, and
Chi
,
E. X.
,
2008
, “
Analysis of Generalized Optimal Current Lattice Model for Traffic Flow
,”
Int. J. Mod. Phys. C
,
19
(
5
), pp.
727
739
.10.1142/S0129183108012467
31.
Tian
,
C.
,
Sun
,
D. H.
, and
Zhang
,
M.
,
2011
, “
Nonlinear Analysis of Lattice Model With Consideration of Optimal Current Difference
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
11
), pp.
4524
4529
.10.1016/j.cnsns.2011.03.012
32.
Peng
,
G. H.
,
2013
, “
A New Lattice Model of Two-Lane Traffic Flow With the Consideration of Optimal Current Difference
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
3
), pp.
559
566
.10.1016/j.cnsns.2012.07.015
33.
Ge
,
H. X.
,
Zheng
,
P. J.
, and
Lo
,
S. M.
,
2014
, “
TDGL Equation in Lattice Hydrodynamic Model Considering Driver's Physical Delay
,”
Nonlinear Dyn.
,
76
(
1
), pp.
441
445
.10.1007/s11071-013-1137-8
34.
Zhang
,
M.
,
Sun
,
D. H.
, and
Tian
,
C.
,
2014
, “
An Extended Two-Lane Traffic Flow Lattice Model With Drivers Delay Time
,”
Nonlinear Dyn.
,
77
(
3
), pp.
839
847
.10.1007/s11071-014-1345-x
35.
Peng
,
G. H.
,
2013
, “
A New Lattice Model of the Traffic Flow With the Consideration of the Driver Anticipation Effect in a Two-Lane System
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
1035
1043
.10.1007/s11071-013-0850-7
36.
Wang
,
T.
,
Gao
,
Z. Y.
, and
Zhang
,
J.
,
2014
, “
A New Lattice Hydrodynamic Model for Two-Lane Traffic With the Consideration of Density Difference Effect
,”
Nonlinear Dyn.
,
75
(
1–2
), pp.
27
34
.10.1007/s11071-013-1046-x
37.
Wang
,
T.
,
Gao
,
Z. Y.
, and
Zhang
,
W. Y.
,
2014
, “
Phase Transitions in the Two-Lane Density Difference Lattice Hydrodynamic Model of Traffic Flow
,”
Nonlinear Dyn.
,
77
(
3
), pp.
635
642
.10.1007/s11071-014-1325-1
38.
Tang
,
T. Q.
,
Wang
,
Y. P.
, and
Yang
,
X. B.
,
2012
, “
A New Car-Following Model Accounting for Varying Road Condition
,”
Nonlinear Dyn.
,
70
(
2
), pp.
1397
1405
.10.1007/s11071-012-0542-8
39.
Zhou
,
J.
,
Shi
,
Z. K.
, and
Cao
,
J. L.
,
2014
, “
An Extended Traffic Flow Model on a Gradient Highway With the Consideration of the Relative Velocity
,”
Nonlinear Dyn.
,
78
(
3
), pp.
1765
1779
.10.1007/s11071-014-1553-4
40.
Chen
,
J. Z.
,
Shi
,
Z. K.
, and
Hu
,
Y. M.
,
2013
, “
An Extended Macroscopic Model for Traffic Flow on a Highway With Slopes
,”
Int. J. Mod. Phys. C
,
24
(
9
), p.
1350061
.10.1142/S0129183113500617
41.
Zhu
,
W. X.
, and
Zhang
,
L. D.
,
2012
, “
A Novel Lattice Traffic Flow Model and Its Solitary Density Waves
,”
Int. J. Mod. Phys. C
,
23
(
3
), p.
1250025
.10.1142/S0129183112500258
42.
Gupta
,
A. K.
,
Sharma
,
S.
, and
Redhu
,
P.
,
2014
, “
Analyses of Lattice Traffic Flow Model on a Gradient Highway
,”
Commun. Theor. Phys.
,
62
(
3
), pp.
393
404
.10.1088/0253-6102/62/3/17
43.
Gupta
,
A. K.
, and
Redhu
,
P.
,
2014
, “
Analysis of a Modified Two-Lane Lattice Model by Considering the Density Difference Effect
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
5
), pp.
1600
1610
.10.1016/j.cnsns.2013.09.027
44.
Redhu
,
P.
, and
Gupta
,
A. K.
,
2014
, “
Phase Transition in a Two-Dimensional Triangular Flow With Consideration of Optimal Current Difference Effect
,”
Nonlinear Dyn.
,
78
(
2
), pp.
957
968
.10.1007/s11071-014-1489-8
45.
Gupta
,
A. K.
, and
Redhu
,
P.
,
2013
, “
Jamming Transition of a Two-Dimensional Traffic Dynamics With Consideration of Optimal Current Difference
,”
Phys. Lett. A
,
377
(
34
), pp.
2027
2033
.10.1016/j.physleta.2013.06.009
46.
Gupta
,
A. K.
, and
Redhu
,
P.
,
2013
, “
Analyses of Drivers Anticipation Effect in Sensing Relative Flux in a New Lattice Model for Two-Lane Traffic System
,”
Physica A
,
392
(
22
), pp.
5622
5632
.10.1016/j.physa.2013.07.040
47.
Gupta
,
A. K.
, and
Katiyar
,
V. K.
,
2005
, “
Analyses of Shock Waves and Jams in Traffic Flow
,”
J. Phys. A
,
38
(
19
), pp.
4069
4083
.10.1088/0305-4470/38/19/002
48.
Gupta
,
A. K.
, and
Katiyar
,
V. K.
,
2006
, “
Phase Transition of Traffic States With On-Ramp
,”
Physica A
,
371
(
2
), pp.
674
682
.10.1016/j.physa.2006.03.061
49.
Gupta
,
A. K.
, and
Katiyar
,
V. K.
,
2006
, “
A New Anisotropic Continuum Model for Traffic Flow
,”
Physica A
,
368
(
2
), pp.
551
559
.10.1016/j.physa.2005.12.036
50.
Gupta
,
A. K.
, and
Sharma
,
S.
,
2010
, “
Nonlinear Analysis of Traffic Jams in an Anisotropic Continuum Model
,”
Chin. Phys. B
,
19
(
11
), p.
110503
.10.1088/1674-1056/19/11/110503
51.
Gupta
,
A. K.
, and
Sharma
,
S.
,
2012
, “
Analysis of the Wave Properties of a New Two-Lane Continuum Model With the Coupling Effect
,”
Chin. Phys. B
,
21
(
1
), p.
015201
.10.1088/1674-1056/21/1/015201
You do not currently have access to this content.