This paper deals with the study of the nonlinear dynamics of a rotating flexible link modeled as a one dimensional beam, undergoing large deformation and with geometric nonlinearities. The partial differential equation of motion is discretized using a finite element approach to yield four nonlinear, nonautonomous and coupled ordinary differential equations (ODEs). The equations are nondimensionalized using two characteristic velocities—the speed of sound in the material and a velocity associated with the transverse bending vibration of the beam. The method of multiple scales is used to perform a detailed study of the system. A set of four autonomous equations of the first-order are derived considering primary resonances of the external excitation and one-to-one internal resonances between the natural frequencies of the equations. Numerical simulations show that for certain ranges of values of these characteristic velocities, the slow flow equations can exhibit chaotic motions. The numerical simulations and the results are related to a rotating wind turbine blade and the approach can be used for the study of the nonlinear dynamics of a single link flexible manipulator.

References

References
1.
Hilborn
,
R. C.
,
2000
,
Chaos and Nonlinear Dynamics: An Introduction to Scientists and Engineers
,
Oxford University Press
, New York.
2.
Nikolai
,
A. M.
, and
Sidorov
,
S. V.
,
2006
,
New Methods for Chaotic Dynamics
(World Scientific Series on Nonlinear Science: Series A),
World Scientific Publishing Company
,
Singapore
.
3.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2004
,
Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods
,
Wiley-VCH Verlag GmbH and Co. KGaA
,
Weinheim, Germany
.
4.
Strogatz
,
S. H.
,
2007
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering
,
Westview Press
,
Boulder, CO
.
5.
Sun
,
J. Q.
, and
Luo
,
A. C. J.
,
2006
,
Bifurcations and Chaos in Complex Systems
(Edited Series on Advances in Nonlinear Science and Complexity), Vol.
1
,
Elsevier
,
NY
.
6.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
1983
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(Applied Mathematical Sciences), Vol.
42
,
Springer-Verlag
,
NY
.
7.
Thompson
,
J. M. T.
, and
Stewart
,
H. B.
,
2002
,
Nonlinear Dynamics and Chaos
,
2nd ed.
,
John Wiley & Sons
,
Chichester, UK
.
8.
Kovacic
,
I.
, and
Brennan
,
M. J.
,
2011
,
The Duffing Equation: Nonlinear Oscillators and Their Behaviour
,
1st ed.
,
John Wiley & Sons, Ltd.
, New York.
9.
Burov
,
A. A.
,
1986
, “
On the Non-Existence of a Supplementary Integral in the Problem of a Heavy Two-Link Plane Pendulum
,”
J. Appl. Math. Mech.
,
50
(
1
), pp.
123
125
.10.1016/0021-8928(86)90070-5
10.
Lankalapalli
,
S.
, and
Ghosal
,
A.
,
1996
, “
Possible Chaotic Motion in a Feedback Controlled 2R Robot
,”
Proceedings of the 1996 IEEE International Conference on Robotics and Automation
, Minneapolis, MN, Apr. 24–26, N. Caplan and T. J. Tarn, eds.,
IEEE Press
,
NY
, pp.
1241
1246
.
11.
Nakamura
,
Y.
,
Suzuki
,
T.
, and
Koinuma
,
M.
,
1997
, “
Nonlinear Behavior and Control of a Nonholonomic Free-Joint Manipulator
,”
IEEE Trans. Rob. Autom.
,
13
(
6
), pp.
853
862
.10.1109/70.650164
12.
Mahout
,
V.
,
Lopez
,
P.
,
Carcasss
,
J. P.
, and
Mira
,
C.
,
1993
, “
Complex Behaviours of a Two-Revolute Joints Robot: Harmonic, Subharmonic, Higher Harmonic, Fractional Harmonic, Chaotic Responses
,”
Proceedings of the IEEE Systems, Man & Cybernetics'93 Conference
, Le Touquet, France, Oct. 17–20, pp.
201
205
.
13.
Verduzco
,
F.
, and
Alvarez
,
J.
,
1999
, “
Bifurcation Analysis of a 2-DOF Robot Manipulator Driven by Constant Torques
,”
Int. J. Bifurcation Chaos
,
9
(
4
), pp.
617
627
.10.1142/S0218127499000432
14.
Li
,
K. F.
,
Li
,
L.
, and
Chen
,
Y.
,
2002
, “
Chaotic Motion of a Planar 2-DOF Robot
,”
J. Sichuan Univ. Sci. Technol.
,
21
(
1
), pp.
6
9
.
15.
Yin
,
Z.
, and
Ge
,
X.
,
2011
, “
Chaotic Self-Motion of a Spatial Redundant Robotic Manipulator
,”
Res. J. Appl. Sci., Eng. Technol.
,
3
(
9
), pp.
993
999
.
16.
Yang
,
X. D.
, and
Chen
,
L. Q.
,
2005
, “
Bifurcation and Chaos of an Axially Accelerating Viscoelastic Beam
,”
Chaos, Solitons Fractals
,
23
(
1
), pp.
249
258
.10.1016/j.chaos.2004.04.008
17.
Yu
,
P.
, and
Bi
,
Q.
,
1988
, “
Analysis of Nonlinear Dynamics and Bifurcations of a Double Pendulum
,”
J. Sound Vib.
,
217
(
4
), pp.
691
736
.10.1006/jsvi.1998.1781
18.
Balachandran
,
B.
, and
Nayfeh
,
A. H.
,
1992
, “
Cyclic Motions Near a Hopf Bifurcation of a Four-Dimensional System
,”
Nonlinear Dyn.
,
3
(
1
), pp.
19
39
.10.1007/BF00045469
19.
Nayfeh
,
A. H.
,
1993
,
Introduction to Perturbation Techniques
,
John Wiley and Sons Inc.
, New York.
20.
Wahi
,
P.
, and
Kumawat
,
V.
,
2011
, “
Nonlinear Stability Analysis of a Reduced Order Model of Nuclear Reactors: A Parametric Study Relevant to the Advanced Heavy Water Reactor
,”
Nucl. Eng. Des.
,
241
(
1
), pp.
134
143
.10.1016/j.nucengdes.2010.11.006
21.
Chandra Shaker
,
M.
, and
Ghosal
,
A.
,
2006
, “
Nonlinear Modeling of Flexible Link Manipulators Using Non-Dimensional Variables
,”
Trans. ASME J. Comput. Nonlinear Dyn.
,
1
(
2
), pp.
123
134
.10.1115/1.2162866
22.
Endurance Wind Power Ltd., “
Endurancewindpower
,” Last Accessed June 6, 2014, http://www.endurancewindpower.com/e3120.html
23.
Nandakumar
,
K.
,
2009
, “
A study of Four Problems in Nonlinear Vibrations Via the Method of Multiple Scales
,” Doctor of Philosophy thesis, IISc, Bangalore.
24.
El-Bassiouny
,
A. F.
,
1999
, “
Response of a Three-Degree-of-Freedom System With Cubic Nonlinearities to Harmonic Excitation
,”
Appl. Math. Comput.
,
104
(
1
), pp.
65
84
.10.1016/S0096-3003(98)10051-6
25.
Cao
,
D. X.
, and
Zhang
,
W.
,
2006
, “
Global Bifurcations and Chaotic Dynamics for a String-Beam Coupled System
,”
Chaos, Solitons Fractals
,
37
(
3
), pp.
858
875
.10.1016/j.chaos.2006.09.072
26.
Jinchen
,
J.
, and
Yushu
,
C.
,
1999
, “
Bifurcation in a Parametrically Excited Two Degree of Freedom Nonlinear Oscillating System With 1:2 Internal Resonance
,”
Appl. Math. Mech.
,
20
(
4
), pp.
350
359
.10.1007/BF02458560
27.
Parker
,
T. S.
, and
Chua
,
L. O.
,
Practical Numerical Algorithms for Chaotic Systems
,
Springer Verlag Inc.
,
NY
.
28.
Sandri
,
M.
,
1996
, “
Numerical Calculation of Lyapunov Exponents
,”
Math. J.
,
6
(3), pp.
78
84
.
29.
Tsumoto
,
K.
,
Ueta
,
T.
,
Yoshinaga
,
T.
, and
Kawakami
,
H.
,
2012
, “
Bifurcation Analyses of Nonlinear Dynamical Systems: From Theory to Numerical Computations
,”
Nonlinear Theory Appl. IEICE
,
3
(
4
), pp.
458
476
.10.1587/nolta.3.458
30.
MATLAB, Version 8 (R2012b),
2012
,
The MathWorks, Inc.
,
Natick, MA
.
31.
Monagan
,
M. B.
,
Geddes
,
K. O.
,
Heal
,
K. M.
,
Labahn
,
G.
,
Vorkoetter
,
S. M.
,
McCarron
,
J.
, and
DeMarco
,
P.
,
2012
,
Maple 14 Programming Guide
,
Maplesoft
,
Waterloo, ON, Canada
.
You do not currently have access to this content.