The present paper illustrates the potential of the adjoint method for a wide range of optimization problems in multibody dynamics such as inverse dynamics and parameter identification. Although the equations and matrices included show a complicated structure, the additional effort when combining the standard forward solver to the adjoint backward solver is kept in limits. Therefore, the adjoint method shows an efficient way to incorporate inverse dynamics to engineering multibody applications, e.g., trajectory tracking or parameter identification in the field of robotics. The present paper studies examples for both, parameter identification and optimal control, and shows the potential of the adjoint method in solving classical optimization problems in multibody dynamics.

References

References
1.
Haug
,
E.
, and
Ehle
,
P.
,
1982
, “
Second-Order Design Sensitivity Analysis of Mechanical System Dynamics
,”
Int. J. Numer. Methods Eng.
,
18
(
11
), pp.
1699
1717
.10.1002/nme.1620181109
2.
Haug
,
E.
,
Wehage
,
R.
, and
Mani
,
N.
,
1984
, “
Design Sensitivity Analysis of Large-Scaled Constrained Dynamic Mechanical Systems
,”
Trans. ASME
,
106
(
2
), pp.
156
162
.10.1115/1.3260856
3.
Bestle
,
D.
, and
Eberhard
,
P.
,
1992
, “
Analyzing and Optimizing Multibody Systems
,”
Mech. Struct. Mach.
,
20
(
1
), pp.
67
92
.10.1080/08905459208905161
4.
Eberhard
,
P.
,
1996
, “
Adjoint Variable Method for Sensitivity Analysis of Multibody Systems Interpreted as a Continuous, Hybrid Form of Automatic Differentiation
,” Computational Differentiation Techniques, Applications, and Tools, M. Berz, C. Bischof, G. Corliss, and A. Griewank, A., eds.,
SIAM, Philadelphia
, PA, pp.
319
328
.
5.
Lions
,
J.
,
1971
,
Optimal Control of Systems Governed by Partial Differential Equations
,
Springer-Verlag
,
New York
.
6.
Giles
,
M.
, and
Pierce
,
N.
,
2000
, “
An Introduction to the Adjoint Approach to Design
,”
Flow, Turbul. Combust.
,
65
(
3–4
), pp.
393
415
.10.1023/A:1011430410075
7.
Jameson
,
A.
,
2003
, “
Aerodynamic Shape Optimization Using the Adjoint Method” (VKI Lecture Series on Aerodynamic Drag Prediction and Reduction)
,
von Karman Institute of Fluid Dynamics
,
Rhode St. Genese, Belgium
, pp.
3
7
.
8.
Bryson
,
A. E.
, and
Ho
,
Y. C.
,
1975
,
Applied Optimal Control
,
Hemisphere
,
Washington, DC
.
9.
Anderson
,
W.
, and
Venkatakrishnan
,
V.
,
1999
, “
Aerodynamic Design Optimization on Unstructured Grid With a Continuous Adjoint Formulation
,”
Comput. Fluid
,
28
(4–5), pp.
443
480
. 10.1016/S0045-7930(98)00041-3
10.
Nadarajah
,
S.
, and
Jameson
,
A.
,
2000
, “
A Comparison of the Continuous and Discrete Adjoint Approach to Automatic Aerodynamic Optimisation
,”
AIAA
Paper No. 2000-0067.
11.
Oberai
,
A.
,
Gokhale
,
N.
, and
Feijóo
,
G.
,
2003
, “
Solution of Inverse Problems in Elasticity Imaging Using the Adjoint Method
,”
Inverse Probl.
,
19
(
2
), pp.
297
313
.10.1088/0266-5611/19/2/304
12.
McNamara
,
A.
,
Treuille
,
A.
,
Popović
,
Z.
, and
Stam
,
J.
,
2004
, “
Fluid Control using the Adjoint Method
,”
ACM Trans. Graphics (TOG) - Proc ACM SIGGRAPH
,
23
(
3
), pp.
449
456
.10.1145/1015706.1015744
13.
Taylor
,
T.
,
Palacios
,
F.
,
Duraisamy
,
K.
, and
Alonso
,
J.
,
2013
, “
A Hybrid Adjoint Approach Applied to Turbulent Flow Simulations
,”
21st AIAA Computational Fluid Dynamics Conference
,
San Diego
, June 24–27.
14.
Bottasso
,
C.
,
Croce
,
A.
,
Ghezzi
,
L.
, and
Faure
,
P.
,
2004
, “
On the Solution of Inverse Dynamics and Trajectory Optimization Problems for Multibody Systems
,”
Multibody Syst. Dyn.
,
11
(
1
), pp.
1
22
.10.1023/B:MUBO.0000014875.66058.74
15.
Bertolazzi
,
E.
,
Biral
,
F.
, and
Lio
,
M. D.
,
2005
, “
Symbolic-Numeric Indirect Method for Solving Optimal Control Problems for Large Multibody Systems
,”
Multibody Syst. Dyn.
,
13
(
2
), pp.
233
252
.10.1007/s11044-005-3987-4
16.
Schaffer
,
A.
,
2005
, “
On the Adjoint Formulation of Design Sensitivity Analysis of Multibody Dynamics
,” Ph.D. dissertation, University of Iowa, Iowa City, IA, http://ir.uiowa.edu/etd/93
17.
Petzold
,
L.
,
Li
,
S.
,
Cao
,
Y.
, and
Serban
,
R.
,
2006
, “
Sensitivity Analysis for Differential-Algebraic Equations and Partial Differential Equations
,”
Comput. Chem. Eng.
,
30
(
10–12
), pp.
1553
1559
.10.1016/j.compchemeng.2006.05.015
18.
Cao
,
Y.
,
Li
,
S.
, and
Petzold
,
L.
,
2002
, “
Adjoint Sensitivity Analysis for Differential-Algebraic Equations: Algorithms and Software
,”
J. Comput. Appl. Math.
,
149
(
1
), pp.
171
191
.10.1016/S0377-0427(02)00528-9
19.
Cao
,
Y.
,
Li
,
S.
,
Petzold
,
L.
, and
Serban
,
R.
,
2003
, “
Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution
,”
SIAM J. Sci. Comput.
,
24
(
3
), pp.
1076
1089
.10.1137/S1064827501380630
20.
Shabana
,
A.
,
1997
, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
1
(
3
), pp.
339
348
.10.1023/A:1009740800463
21.
Held
,
A.
, and
Seifried
,
R.
,
2013
, “
Gradient-Based Optimization of Flexible Multibody Systems Using the Absolute Nodal Coordinate Formulation
,”
Proceedings of the ECCOMAS Thematic Conference Multibody Dynamics 2013
,
Zagreb, Croatia
, July 1–4.
22.
Pi
,
T.
,
Zhang
,
Y.
, and
Chen
,
L.
,
2012
, “
First Order Sensitivity Analysis of Flexible Multibody Systems Using the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
27
(
2
), pp.
153
171
.10.1007/s11044-011-9269-4
23.
Ding
,
J.-Y.
,
Pan
,
Z.-K.
, and
Chen
,
L.-Q.
,
2007
, “
Second Order Adjoint Sensitivity Analysis of Multibody Systems Described by Differential-Algebraic Equations
,”
Multibody Syst. Dyn.
,
18
(
4
), pp.
599
617
.10.1007/s11044-007-9080-4
24.
Vyasarayani
,
C.
,
Uchida
,
T.
, and
McPhee
,
J.
,
2012
, “
Nonlinear Parameter Identification in Multibody Systems Using Homotopy Continuation
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011012
.10.1115/1.4004885
25.
Ding
,
J.-Y.
,
Pan
,
Z.-K.
, and
Chen
,
L.-Q.
,
2012
, “
Parameter Identification of Multibody Systems Based on Second Order Sensitivity Analysis
,”
Int. J. Nonlinear Mech.
,
47
(
10
), pp.
1105
1110
.10.1016/j.ijnonlinmec.2011.09.009
26.
Özyurt
,
D. B.
, and
Barton
,
P. I.
,
2005
, “
Cheap Second Order Directional Derivatives of Stiff ODE Embedded Functionals
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
1725
1743
.10.1137/030601582
27.
Steiner
,
W.
, and
Reichl
,
S.
,
2011
, “
A contribution to Inverse Dynamic Problems in Multibody Systems
,”
Multibody Dynamics 2011, ECCOMAS Thematic Conference, Brussels, Belgium, July 4–7
.
28.
Steiner
,
W.
, and
Reichl
,
S.
,
2012
, “
The Optimal Control Approach to Dynamical Inverse Problems
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
2
), p.
021010
.10.1115/1.4005365
29.
Gear
,
C.
,
Gupta
,
G.
, and
Leimkuhler
,
B.
,
1985
, “
Automatic Integration of the Euler-Lagrange Equations With Constraints
,”
J. Comp. Appl. Math.
,
12/13
, pp.
77
90
.10.1016/0377-0427(85)90008-1
30.
Hilbert
,
H.
,
Hughes
,
T.
, and
Taylor
,
R.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.10.1002/eqe.4290050306
31.
Negrut
,
D.
,
Rampalli
,
R.
,
Ottarsson
,
G.
, and
Sajdak
,
A.
,
2005
, “
On the Use of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics
,”
ASME
Paper No. DETC2005-85096. 10.1115/DETC2005-85096
32.
Süli
,
E.
, and
Mayers
,
D.
,
2003
,
An Introduction to Numerical Analysis
, Cambridge University Press, Cambridge, UK.
33.
Kirk
,
D.
,
2004
,
Optimal Control Theory
,
Dover Publications
,
Mineola, NY
.
34.
Rao
,
S.
,
2009
,
Engineering Optimization: Theory and Practice
,
4th ed.
,
Wiley
,
Hoboken, NJ
.
35.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
,
2004
, “
A Geometric Approach to Solving Problems of Control Constraints: Theory and a DAE Framework
,”
Multibody Syst. Dyn.
,
11
(
4
), pp.
343
364
.10.1023/B:MUBO.0000040800.40045.51
36.
Betsch
,
P.
,
Uhlar
,
S.
, and
Quasem
,
M.
,
2009
, “
Numerical Integration of Mechanical Systems With Mixed Holonomic and Control Constraints
,”
Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics
,
K.
Arczewski
,
J.
Fraczek
, and
M.
Wojtyra
, eds., Warsaw University of Technology, Poland, June 29–July 2.
37.
Glück
,
T.
,
Eder
,
A.
, and
Kugi
,
A.
,
2013
, “
Swing-Up Control of a Triple Pendulum on a Cart With Experimental Validation
,”
Automatica
,
49
(
3
), pp.
801
808
.10.1016/j.automatica.2012.12.006
You do not currently have access to this content.