Dry-friction oscillators are mechanical systems with dry friction and stick-slip vibrations. In the context of control theory, the stability analysis of this type of dynamical systems is important since they exhibit nonsmooth bifurcations, or most famously a sliding–grazing bifurcation inducing abrupt chaos. This paper develops a Lyapunov-based framework to study the so-called structural stability of the system, predicting the onset of such unique bifurcations. To achieve this, the nonlinear system is first represented as a nonsmooth Takagi–Sugeno (TS) fuzzy model, and the structural stability is then formulated as linear matrix inequalities (LMI) feasibility problems with less conservative formulation. Solving the resulting LMI problem, the onset of sliding–grazing bifurcation can be accurately predicted.

References

References
1.
Filippov
,
A. F.
, and
Arscott
,
F. M.
,
1988
,
Differential Equations With Discontinuous Righthand Sides: Control Systems
, Vol.
18
,
Springer
, The Netherlands.
2.
Leine
,
R. I.
, and
Nijmeijer
,
H.
,
2013
,
Dynamics and Bifurcations of Non-Smooth Mechanical Systems
, Vol.
18
,
Springer Science & Business
, Berlin-Heidelberg Germany.10.1007/978-3-540-44398-8
3.
Popp
,
K.
,
Hinrichs
,
N.
, and
Oestreich
,
M.
,
1995
, “
Dynamical Behaviour of a Friction Oscillator With Simultaneous Self and External Excitation
,”
Sadhana
,
20
(
2–4
), pp.
627
654
.10.1007/BF02823210
4.
Hinrichs
,
N.
,
Oestreich
,
M.
, and
Popp
,
K.
,
1998
, “
On the Modelling of Friction Oscillators
,”
J. Sound Vib.
,
216
(
3
), pp.
435
459
.10.1006/jsvi.1998.1736
5.
Galvanetto
,
U.
,
1999
, “
Nonlinear Dynamics of Multiple Friction Oscillators
,”
Comput. Methods Appl. Mech. Eng.
,
178
(
3–4
), pp.
291
306
.10.1016/S0045-7825(99)00021-3
6.
Di Bernardo
,
M.
,
Budd
,
C. J.
,
Champneys
,
A. R.
,
Kowalczyk
,
P.
,
Nordmark
,
A. B.
,
Tost
,
G. O.
, and
Piiroinen
,
P. T.
,
2008
, “
Bifurcations in Nonsmooth Dynamical Systems
,”
SIAM Rev.
,
50
(
4
), pp.
629
701
.10.1137/050625060
7.
Galvanetto
,
U.
,
2001
, “
Some Discontinuous Bifurcations in a Two-Block Stick-Slip System
,”
J. Sound Vib.
,
248
(
4
), pp.
653
669
.10.1006/jsvi.2001.3809
8.
Dankowicz
,
H.
, and
Nordmark
,
A. B.
,
2000
, “
On the Origin and Bifurcations of Stick-Slip Oscillations
,”
Phys. D
,
136
(
3
), pp.
280
302
.10.1016/S0167-2789(99)00161-X
9.
Di Bernardo
,
M.
,
2008
,
Piecewise-Smooth Dynamical Systems: Theory and Applications
,
Springer
, London, UK.
10.
Leine
,
R.
, and
Van Campen
,
D.
,
2002
, “
Discontinuous Bifurcations of Periodic Solutions
,”
Math. Comput. Modell.
,
36
(
3
), pp.
259
273
.10.1016/S0895-7177(02)00124-3
11.
Pascal
,
M.
,
2008
, “
Dynamics of Coupled Oscillators Excited by Dry Friction
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
3
), p.
031009
.10.1115/1.2908272
12.
Nechak
,
L.
,
Berger
,
S.
, and
Aubry
,
E.
,
2013
, “
Wiener–Askey and Wiener–Haar Expansions for the Analysis and Prediction of Limit Cycle Oscillations in Uncertain Nonlinear Dynamic Friction Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021007
.10.1115/1.4024851
13.
Di Bernardo
,
M.
,
Kowalczyk
,
P.
, and
Nordmark
,
A.
,
2002
, “
Bifurcations of Dynamical Systems With Sliding: Derivation of Normal-Form Mappings
,”
Phys. D
,
170
(
3
), pp.
175
205
.10.1016/S0167-2789(02)00547-X
14.
Nordmark
,
A. B.
,
1997
, “
Universal Limit Mapping in Grazing Bifurcations
,”
Phys. Rev. E
,
55
(
1
), pp.
266
270
.10.1103/PhysRevE.55.266
15.
Kundu
,
S.
,
Banerjee
,
S.
, and
Giaouris
,
D.
,
2011
, “
Vanishing Singularity in Hard Impacting Systems
,”
Discrete Contin. Dyn. Syst., Ser. B
,
16
(
1
), pp.
319
332
.10.3934/dcdsb.2011.16.319
16.
Dankowicz
,
H.
, and
Jerrelind
,
J.
,
2005
, “
Control of Near-Grazing Dynamics in Impact Oscillators
,”
Proc. R. Soc. A
,
461
(
2063
), pp.
3365
3380
.10.1098/rspa.2005.1516
17.
Mehran
,
K.
,
Zahawi
,
B.
, and
Giaouris
,
D.
,
2012
, “
Investigation of the Near-Grazing Behavior in Hard-Impact Oscillators Using Model-Based TS Fuzzy Approach
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1293
1309
.10.1007/s11071-012-0348-8
18.
di Bernardo
,
M.
,
Kowalczyk
,
P.
, and
Nordmark
,
A.
,
2003
, “
Sliding Bifurcations: A Novel Mechanism for the Sudden Onset of Chaos in Dry Friction Oscillators
,”
Int. J. Bifurcation Chaos
,
13
(
10
), pp.
2935
2948
.10.1142/S021812740300834X
19.
Luo
,
A. C.
, and
Gegg
,
B. C.
,
2006
, “
Periodic Motions in a Periodically Forced Oscillator Moving on an Oscillating Belt With Dry Friction
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
212
220
.10.1115/1.2198874
20.
Piiroinen
,
P. T.
, and
Kuznetsov
,
Y. A.
,
2008
, “
An Event-Driven Method to Simulate Filippov Systems With Accurate Computing of Sliding Motions
,”
ACM Trans. Math. Software (TOMS)
,
34
(
3
), p.
13
.10.1145/1356052.1356054
21.
Mehran
,
K.
,
Giaouris
,
D.
, and
Zahawi
,
B.
,
2010
, “
Stability Analysis and Control of Nonlinear Phenomena in Boost Converters Using Model-Based Takagi–Sugeno Fuzzy Approach
,”
IEEE Trans. Circuits Syst. I
,
57
(
1
), pp.
200
212
.10.1109/TCSI.2009.2019389
22.
Tanaka
,
K.
,
Ikeda
,
T.
, and
Wang
,
H.
,
1998
, “
Fuzzy Regulators and Fuzzy Observers: Relaxed Stability Conditions and LMI-Based Designs
,”
IEEE Trans. Fuzzy Syst.
,
6
(
2
), pp.
250
265
.10.1109/91.669023
23.
Tanaka
,
K.
, and
Wang
,
H. O.
,
2001
,
Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach
,
John Wiley & Sons
,
Newark, NJ
.
24.
Ting
,
C.-S.
,
2006
, “
Stability Analysis and Design of Takagi–Sugeno Fuzzy Systems
,”
Inf. Sci.
,
176
(
19
), pp.
2817
2845
.10.1016/j.ins.2005.06.005
25.
Narimani
,
M.
, and
Lam
,
H.-K.
,
2009
, “
Relaxed LMI-Based Stability Conditions for Takagi–Sugeno Fuzzy Control Systems Using Regional-Membership-Function-Shape-Dependent Analysis Approach
,”
IEEE Trans. Fuzzy Syst.
,
17
(
5
), pp.
1221
1228
.10.1109/TFUZZ.2009.2025959
26.
Dong
,
J.
, and
Yang
,
G.-H.
,
2011
, “
Control Synthesis of T–S Fuzzy Systems Based on a New Control Scheme
,”
IEEE Trans. Fuzzy Syst.
,
19
(
2
), pp.
323
338
.10.1109/TFUZZ.2010.2096470
27.
Yoshitake
,
Y.
, and
Sueoka
,
A.
,
2000
, “
Forced Self-Excited Vibration With Dry Friction
,”
Applied Nonlinear Dynamics and Chaos of Mechanical Systems With Discontinuities
, Vol.
28
,
World Scientific Publishing
,
London
, pp.
237
257
.10.1142/9789812796301_0010
28.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
29.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.10.1137/1.9781611970777
30.
Khalil
,
H. K.
, and
Grizzle
,
J.
,
2002
,
Nonlinear Systems
, Vol.
3
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.