In this paper, we develop Galerkin approximations for determining the stability of delay differential equations (DDEs) with time periodic coefficients and time periodic delays. Using a transformation, we convert the DDE into a partial differential equation (PDE) along with a boundary condition (BC). The PDE and BC we obtain have time periodic coefficients. The PDE is discretized into a system of ordinary differential equations (ODEs) using the Galerkin method with Legendre polynomials as the basis functions. The BC is imposed using the tau method. The resulting ODEs are time periodic in nature; thus, we resort to Floquet theory to determine the stability of the ODEs. We show through several numerical examples that the stability charts obtained from the Galerkin method agree closely with those obtained from direct numerical simulations.

References

References
1.
Asl
,
F. M.
, and
Ulsoy
,
A. G.
,
2003
, “
Analysis of a System of Linear Delay Differential Equations
,”
ASME J. Dyn. Syst. Meas. Contr.
,
125
(
2
), pp.
215
223
.10.1115/1.1568121
2.
Jarlebring
,
E.
, and
Damm
,
T.
,
2007
, “
The Lambert W Function and the Spectrum of Some Multidimensional Time-Delay Systems
,”
Automatica
,
43
(
12
), pp.
2124
2128
.10.1016/j.automatica.2007.04.001
3.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2010
,
Time-Delay Systems: Analysis and Control Using the Lambert W Function
,
World Scientific
, Singapore.
4.
Kalmár-Nagy
,
T.
,
2009
, “
Stability Analysis of Delay-Differential Equations by the Method of Steps and Inverse Laplace Transform
,”
Differ. Equ. Dyn. Syst.
,
17
(
1–2
), pp.
185
200
.10.1007/s12591-009-0014-x
5.
Olgac
,
N.
, and
Sipahi
,
R.
,
2002
, “
An Exact Method for the Stability Analysis of Time-Delayed Linear Time-Invariant (LTI) Systems
,”
IEEE Trans. Autom. Control
,
47
(
5
), pp.
793
797
.10.1109/TAC.2002.1000275
6.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2005
, “
Asymptotics for the Characteristic Roots of Delayed Dynamic Systems
,”
ASME J. Appl. Mech.
,
72
(
4
), pp.
475
483
.10.1115/1.1875492
7.
Gu
,
K.
,
Chen
,
J.
, and
Kharitonov
,
V. L.
,
2003
,
Stability of Time Delay Systems
,
Springer
, Berlin, Germany.
8.
Gu
,
K.
, and
Niculescu
,
S. I.
,
2006
, “
Stability Analysis of Time-Delay Systems: A Lyapunov Approach
,”
Advanced Topics in Control Systems Theory
,
Springer
, London, UK, pp.
139
170
.
9.
Fridman
,
E.
,
2001
, “
New Lyapunov–Krasovskii Functionals for Stability of Linear Retarded and Neutral Type Systems
,”
Syst. Control Lett.
,
43
(
4
), pp.
309
319
.10.1016/S0167-6911(01)00114-1
10.
Insperger
,
T.
, and
Stepan
,
G.
,
2011
,
Semi-Discretization for Time-Delay Systems
,
Springer
New York
.
11.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2005
, “
Galerkin Projections for Delay Differential Equations
,”
ASME J. Dyn. Syst. Meas. Contr.
,
127
(
1
), pp.
80
87
.10.1115/1.1870042
12.
Vyasarayani
,
C. P.
,
2012
, “
Galerkin Approximations for Higher Order Delay Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031004
.10.1115/1.4005931
13.
Sadath
,
A.
, and
Vyasarayani
,
C. P.
,
2014
, “
Galerkin Approximations for Stability of Delay Differential Equations With Time Periodic Coefficients
,”
ASME J. Comput. Nonlinear Dyn.
(to be published).10.1115/1.4026989
14.
Butcher
,
E. A.
,
Bobrenkov
,
O. A.
,
Bueler
,
E.
, and
Nindujarala
,
P.
,
2009
, “
Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
3
), p.
031003
.10.1115/1.3124088
15.
Khasawneh
,
F. A.
,
Mann
,
B. P.
, and
Butcher
,
E. A.
,
2011
, “
A Multi-Interval Chebyshev Collocation Approach for the Stability of Periodic Delay Systems With Discontinuities
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
11
), pp.
4408
4421
.10.1016/j.cnsns.2011.03.025
16.
Garg
,
N. K.
,
Mann
,
B. P.
,
Kim
,
N. H.
, and
Kurdi
,
M. H.
,
2007
, “
Stability of a Time-Delayed System With Parametric Excitation
,”
ASME J. Dyn. Syst. Meas. Contr.
,
129
(125), pp.
125
135
.10.1115/1.2432357
17.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
,
2005
, “
Pseudospectral Differencing Methods for Characteristic Roots of Delay Differential Equations
,”
SIAM J. Sci. Comput.
,
27
(
2
), pp.
482
495
.10.1137/030601600
18.
Bobrenkov
,
O. A.
,
Butcher
,
E. A.
, and
Mann
,
B. P.
,
2013
, “
Application of the Lyapunov–Floquet Transformation to Differential Equations With Time Delay and Periodic Coefficients
,”
J. Vib. Control
,
19
(
4
), pp.
521
537
.10.1177/1077546311433914
19.
Bobrenkov
,
O. A.
,
Nazari
,
M.
, and
Butcher
,
E. A.
,
2012
, “
Response and Stability Analysis of Periodic Delayed Systems With Discontinuous Distributed Delay
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031010
.10.1115/1.4005925
20.
Sun
,
J. Q.
, and
Song
,
B.
,
2009
, “
Control Studies of Time-Delayed Dynamical Systems With the Method of Continuous Time Approximation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
11
), pp.
3933
3944
.10.1016/j.cnsns.2009.02.011
21.
Sun
,
J. Q.
,
2009
, “
A Method of Continuous Time Approximation of Delayed Dynamical Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
4
), pp.
998
1007
.10.1016/j.cnsns.2008.02.008
22.
Butcher
,
E. A.
, and
Bobrenkov
,
O. A.
,
2011
, “
On the Chebyshev Spectral Continuous Time Approximation for Constant and Periodic Delay Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1541
1554
.10.1016/j.cnsns.2010.05.037
23.
Long
,
X.
,
Insperger
,
T.
, and
Balachandran
,
B.
,
2009
, “
Systems With Periodic Coefficients and Periodically Varying Delays: Semidiscretization-Based Stability Analysis
,”
Delay Differential Equations
,
Springer
, New York, pp.
131
153
.
24.
Altintas
,
Y.
, and
Chan
,
P. K.
,
1992
, “
In-Process Detection and Suppression of Chatter in Milling
,”
Int. J. Mach. Tools Manuf.
,
32
(
3
), pp.
329
347
.10.1016/0890-6955(92)90006-3
25.
Radulescu
,
R.
,
Kapoor
,
S.
, and
DeVor
,
R.
,
1997
, “
An Investigation of Variable Spindle Speed Face Milling for Tool-Work Structures With Complex Dynamics, Part 1: Simulation Results
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
266
272
.10.1115/1.2831103
26.
Long
,
X.
, and
Balachandran
,
B.
,
2010
, “
Stability of Up-Milling and Down-Milling Operations With Variable Spindle Speed
,”
J. Vib. Control
,
16
(
7–8
), pp.
1151
1168
.10.1177/1077546309341131
27.
Sastry
,
S.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Dullerud
,
G. E.
,
2001
, “
Chatter Stability Analysis of the Variable Speed Face-Milling Process
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
753
756
.10.1115/1.1373649
28.
Yilmaz
,
A.
,
Emad
,
A.
, and
Ni
,
J.
,
2002
, “
Machine Tool Chatter Suppression by Multi-Level Random Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
208
216
.10.1115/1.1378794
29.
Liu
,
Z.
, and
Liao
,
L.
,
2004
, “
Existence and Global Exponential Stability of Periodic Solution of Cellular Neural Networks With Time-Varying Delays
,”
J. Math. Anal. Appl.
,
290
(
1
), pp.
247
262
.10.1016/j.jmaa.2003.09.052
30.
Jiang
,
M.
,
Shen
,
Y.
, and
Liao
,
X.
,
2006
, “
Global Stability of Periodic Solution for Bidirectional Associative Memory Neural Networks With Varying-Time Delay
,”
Appl. Math. Comput.
,
182
(
1
), pp.
509
520
.10.1016/j.amc.2006.04.012
31.
Insperger
,
T.
, and
Stepan
,
G.
,
2004
, “
Stability Analysis of Turning With Periodic Spindle Speed Modulation Via Semidiscretization
,”
J. Vib. Control
,
10
(
12
), pp.
1835
1855
.10.1177/1077546304044891
You do not currently have access to this content.