In this paper, the continuous Galerkin Petrov time discretization (cGP) scheme is applied to the Chen system, which is a three-dimensional system of ordinary differential equations (ODEs) with quadratic nonlinearities. In particular, we implement and analyze numerically the higher order cGP(2)-method which is found to be of fourth order at the discrete time points. A numerical comparison with classical fourth-order Runge–Kutta (RK4) is given for the presented problem. We look at the accuracy of the cGP(2) as the Chen system changes from a nonchaotic system to a chaotic one. It is shown that the cGP(2) method gains accurate results at larger time step sizes for both cases.

References

1.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(2), pp.
130
141
.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
2.
Chen
,
G.
, and
Ueta
,
T.
,
1999
, “
Yet Another Chaotic Attractor
,”
Int. J. Bifurcation Chaos
,
9
(
7
), pp.
1465
1466
.10.1142/S0218127499001024
3.
,
J.
,
Chen
,
G.
, and
Zhang
,
S.
,
2002
, “
Dynamical Analysis of a New Chaotic Attractor
,”
Int. J. Bifurcation Chaos
,
12
(
5
), pp.
1001
1015
.10.1142/S0218127402004851
4.
Noorani
,
M. S. M.
,
Hashim
,
I.
,
Ahmad
,
R.
,
Bakar
,
S. A.
,
Ismail
,
E. S.
, and
Zakaria
,
A. M.
,
2007
, “
Comparing Numerical Methods for the Solutions of the Chen System
,”
Chaos, Solitons Fractals
32
(
4
), pp.
1296
1304
.10.1016/j.chaos.2005.12.036
5.
Hashim
,
I.
,
Noorani
,
M. S. M.
,
Ahmad
,
R.
,
Bakar
,
S. A.
,
Ismail
,
E. S.
, and
Zakaria
,
A. M.
,
2006
, “
Accuracy of the Adomian Decomposition Method Applied to the Lorenz System
,”
Chaos, Solitons Fractals
,
28
(
5
), pp.
1149
1158
.10.1016/j.chaos.2005.08.135
6.
Liu
,
C.
,
Liu
,
T.
,
Liu
,
L.
, and
Liu
,
K.
,
2004
, “
A New Chaotic Attractor
,”
Chaos, Solitons Fractals
,
22
(
5
), pp.
1031
1038
.10.1016/j.chaos.2004.02.060
7.
Gorder
,
R. A. V.
, and
Choudhury
,
S. R.
,
2011
, “
Analytical Hopf Bifurcation and Stability Analysis of T System
,”
Commun. Theor. Phys.
,
55
(
4
), pp. 609–616.10.1088/0253-6102/55/4/17
8.
Schieweck
,
F.
,
2010
, “
A-Stable Discontinuous Galerkin–Petrov Time Discretization of Higher Order
,”
J. Numer. Math.
,
18
(
1
), pp.
25
57
.10.1515/jnum.2010.002
9.
Hussain
,
S.
,
Schieweck
,
F.
, and
Turek
,
S.
,
2011
, “
Higher Order Galerkin Time Discretizations and Fast Multigrid Solvers for the Heat Equation
,”
J. Numer. Math.
,
19
(
1
), pp.
41
61
.10.1515/jnum.2011.003
10.
Aziz
,
A. K.
, and
Monk
,
P.
,
1989
, “
Continuous Finite Elements in Space and Time for the Heat Equation
,”
Math. Comput.
,
52
(
186
), pp.
255
274
.10.1090/S0025-5718-1989-0983310-2
11.
Thomée
,
V.
,
2006
,
Galerkin Finite Element Methods for Parabolic Problems
(Computational Mathematics), 2nd ed., Vol.
25
,
Springer
,
Berlin
.10.1007/978-3-662-03359-3
12.
Kutta
,
W.
,
1901
, “
Beitrag zur näherungsweisen Integration totaler Differentialgleichungen
,”
Z. Math. Phys.
,
46
(
1
), pp.
435
453
.
13.
Butcher
,
J. C.
,
2008
,
Numerical Methods for Ordinary Differential Equations
,
Wiley
,
Hoboken, NJ
.10.1002/9780470753767
14.
Matthies
,
G.
, and
Schieweck
,
F.
,
2011
, “
Higher Order Variational Time Discretizations for Nonlinear Systems of Ordinary Differential Equations
,”
Fakultät für Mathematik
,
Otto-von-Guericke Universität Magdeburg
, Magdeburg, Germany.
15.
Ueta
,
T.
, and
Chen
,
G.
,
2000
, “
Bifurcation Analysis of Chen’s Equation
,”
Int. J. Bifurcation Chaos
,
10
(
8
), pp.
1917
1931
.10.1142/S0218127400001183
16.
Al-sawalha
,
M. M.
, and
Noorani
,
M. S. M.
,
2009
, “
A Numeric-Analytic Method for Approximating the Chaotic Chen System
,”
Chaos, Solitons Fractals
,
42
(
3
), pp.
1784
1791
.10.1016/j.chaos.2009.03.096
17.
Deng
,
W.
, and
Li
,
C.
,
2005
, “
Synchronization of Chaotic Fractional Chen System
,”
J. Phys. Soc. Jpn.
,
74
(
6
), pp.
1645
1648
.10.1143/JPSJ.74.1645
18.
,
J.
,
Zhou
,
T.
,
Chen
,
G.
, and
Zhang
,
S.
,
2002
, “
Local Bifurcations of the Chen System
,”
Int. J. Bifurcation Chaos
,
12
(
10
), pp.
2257
2270
.10.1142/S0218127402005819
You do not currently have access to this content.