As fractional-order systems are becoming more widely accepted and their usage is increasing, it is important to understand their energy storage and loss properties. Fractional-order operators can be implemented using a distributed state representation, which has been shown to be equivalent to the Riemann–Liouville representation. In this paper, the distributed state for a fractional-order integrator is represented using an infinite resistor–capacitor network such that the energy storage and loss properties can be readily determined. This derivation is repeated for fractional-order derivatives using an infinite resistor–inductor network. An analytical example is included to verify the results for a half-order integrator. Approximation methods are included.

References

1.
Westerlund
,
S.
, and
Ekstam
,
L.
,
1994
, “
Capacitor Theory
,”
IEEE Trans. Dielectr. Electr. Insul.
,
1
(
5
), pp.
826
839
.10.1109/94.326654
2.
Jesus
,
I. S.
,
Tenreiro Machado
,
J. A.
, and
Silva
,
M.
,
2008
, “
Fractional-Order Capacitors
,”
Proceedings of the 27th IASTED International Conference on Modelling
, Identification and Control, MIC '08, ACTA Press, Anaheim, CA, pp.
346
351
.
3.
Wang
,
Y.
,
Hartley
,
T. T.
,
Lorenzo
,
C. F.
,
Adams
,
J. L.
,
Carletta
,
J. E.
, and
Veillette
,
R. J.
,
2009
, “
Modeling Ultracapacitors as Fractional-Order Systems
,”
New Trends in Nanotechnology and Fractional Calculus Applications
,
D.
Beleanu
,
Z. B.
Guvenc
, and
T.
Machado
, eds.,
Springer, The Netherlands
.10.1007/978-90-481-3293-5_21
4.
Freeborn
,
T. J.
,
Maundy
,
B.
, and
Elwakil
,
A.
,
2013
, “
Accurate Time-domain Extraction of Supercapacitor Fractional-Order Model Parameters
,”
2013 IEEE International Symposium on Circuits and Systems (ISCAS)
, Beijing, China, pp.
2259
2262
.
5.
Hartley
,
T. T.
,
Veillette
,
R. J.
,
Adams
,
J. L.
, and
Lorenzo
,
C. F.
,
2014
, “
Energy Storage and Loss in Fractional-Order Circuit Elements
,”
IET J. Circuits Devices Syst.
(in press).
6.
Warburg
,
E.
,
1899
, “
Uber das VerhaltensogenannterunpolarisierbarerElectro dengegenWechselstrom
,”
Ann. Phys. Chem.
,
67
, pp.
493
499
.
7.
Randles
,
J. E. B.
,
1947
, “
Kinetics of Rapid Electrode Reactions
,”
Disc. Farad. Soc.
,
1
, pp.
11
19
.10.1039/df9470100011
8.
Bard
,
A. J.
, and
Faulkner
,
L. R.
,
1980
,
Electrochemical Methods
,
Wiley
,
New York
.
9.
Macdonald
,
J. R.
,
1987
,
Impedance Spectroscopy
,
Wiley
,
New York
.
10.
Xia
,
L.
, and
Hartley
,
T. T.
,
2000
, “
Behavioral Modeling of Batteries and Fuel Cells
,”
Proceedings of the 2000 Power Systems Conference
, San Diego, CA.
11.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2002
, “
Optimal Battery Charging for Damage Mitigation
,”
Proceedings of the NASA Battery Workshop
, Huntsville, AL.
12.
Sabatier
,
J.
,
Cugnet
,
M.
,
Laruelle
,
S.
,
Grugeon
,
S.
,
Sahut
,
B.
,
Oustaloup
,
A.
, and
Tarascon
,
J. M.
,
2010
, “
A Fractional Order Model for Lead-Acid Battery Crankability Estimation
,”
Commun. Nonlinear Sci. Numer. Simul
.
15
(5), pp.
1308
1317
.10.1016/j.cnsns.2009.05.067
13.
Wu
,
H.
,
Yuan
,
S.
, and
Yin
,
C.
,
2013
, “
A Lithium-Ion battery Fractional Order State Space Model and its Time Domain System Identification
,”
Proceedings of the FISITA 2012 World Automotive Congress (Lecture Notes in Electrical Engineering)
, Vol.
192
, pp.
795
805
.
14.
Achar
,
N. N.
,
Hanneken
,
J. W.
, and
Clarke
,
T.
,
2004
, “
Damping Characteristics of a Fractional Oscillator
,”
Physica A
,
339
(
3–4
), pp.
311
319
.10.1016/j.physa.2004.03.030
15.
Stanislavsky
,
A. A.
,
2005
, “
Twist of Fractional Oscillations
,”
Physica A
,
354
, pp.
101
110
.10.1016/j.physa.2005.02.033
16.
Momani
,
S.
, and
Ibrahim
,
R. W.
,
2007
, “
Analytical Solutions of a Fractional Oscillator by the Decomposition Method
,”
Int. J. Pure Appl. Math.
,
37
(2), pp.
119
131
.
17.
Radwan
,
A. G.
,
Soliman
,
A. M.
, and
Elwakil
,
A. S.
,
2008
, “
Design Equations for Fractional-Order Sinusoidal Oscillators: Four Practical Circuit Examples
,”
Int. J. Circuit Theory Appl.
,
36
(
4
), pp.
473
492
.10.1002/cta.453
18.
Lorenzo
,
C. F.
,
Malti
,
R.
, and
Hartley
,
T. T.
,
2010
, “
The Space of Neutrally Stable Linear Fractional Oscillators of the Fractional Meta-Trigonometry
,”
The 4th IFAC Workshop on Fractional Differentiation and its Applications
, Badajoz, Spain, Paper No. 088.
19.
Hartley
,
T. T.
,
Veillette
,
R. J.
,
Lorenzo
,
C. F.
, and
Adams
,
J. L.
,
2013
, “
On the Energy Stored in Fractional-Order Electrical Elements
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Portland, OR, No. DETC2013-13498.
20.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2013a
, “
Energy Considerations for Fractional Elements
,”
ASME
Paper No. DETC2013-13247.
21.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2013b
, “
Energy Considerations for Mechanical Fractional-Order Elements
,”
ASME J. Comput. Nonlinear Dyn.
10
(1), p.
011014
.10.1115/1.4025772
22.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2011
, “
A Lyapunov Approach to the Stability of Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
437
445
.10.1016/j.sigpro.2010.04.024
23.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2013
, “
Lyapunov Stability of Linear Fractional Systems. Part 1: Definition of Fractional Energy
,”
ASME
Paper No. CIE-IDETC. 10.1115/CIE-IDETC
24.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2013
, “
Lyapunov Stability of Linear Fractional Systems. Part 2: Derivation of a Stability Condition
,”
ASME
Paper No. CIE-IDETC.10.1115/CIE-IDETC
25.
Trigeassou
,
J. C.
,
Poinot
,
T.
,
Lin
,
J.
,
Oustaloup
,
A.
, and
Levron
,
F.
,
1999
, “
Modelling and Identification of a Non Integer Order System
,”
ECC’99 European Control Conference
, Karlsruhe, Germany.
26.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
Transients of Fractional Order Integrator and derivatives
,” Special Issue: “Fractional Systems and Signals,” Signal Image Video Process.,
6
(
3
), pp.
359
372
. Available at http://dblp.uni-trier.de/db/journals/sivp/sivp6.html#TrigeassouMSO12
27.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
State Variables and Transients of Fractional Order Differential Systems
,”
Comput. Math Appl
,
64
(
10
), pp.
3117
3140
.10.1016/j.camwa.2012.03.099
28.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2013
, “
The Infinite State Approach: Origin and Necessity
,”
Comput. Math. Appl.
,
66
(
5
), pp.
892
907
.10.1016/j.camwa.2012.11.020
29.
Hartley
,
T. T.
,
Lorenzo
,
C. F.
,
Trigeassou
,
J. C.
, and
Maamri
,
N.
,
2013
, “
Equivalence of History Function Based and Infinite Dimensional State Initializations for Fractional Order Operators
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041014
.10.1115/1.4023865
30.
Montseny
,
G.
,
1998
, “
Diffusive Representation of Pseudo Differential Time Operators
,”
ESSAIM: Proceedings and Surveys
, Vol.
5
, pp.
159
175
.10.1051/proc:1998005
31.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2008
, “
Insights into the Fractional-Order Initial Value Problem via Semi-infinite Systems
,”
Crit. Rev. Biomed. Eng.
,
36
(
1
), pp.
1
21
.10.1615/CritRevBiomedEng.v36.i1.20
32.
Goldman
,
S.
,
1949
,
Transformation Calculus and Electrical Transients
,
Prentice-Hall
,
New York
.
You do not currently have access to this content.