A simple but effective formulation of beams with large deformation and large rotation is derived from the principles of continuum mechanics. Proper assumptions are imposed, and the beam strain tensors are formulated from the Green strain tensors. The mass matrix is constant, and the elastic forces and the stiffness matrix entries are polynomials of the generalized coordinates, so numerical quadratures are not required in each time step of simulation, which makes the current approach much more superior in numerical efficiency than other formulations. The shape of the cross sections can be arbitrary, either uniform or nonuniform, and the beam can be either straight or curved. The generalized free of traction assumption ensures the strains in the cross section and the beam strains are independent, which resolves the Possion's locking issue and renders this approach can be accurately applied to general composite material beams. The elastic line approach (ELA) in the absolute nodal coordinate formulation (ANCF) can be derived from the current formulation.

References

References
1.
Simo
,
J. C.
,
1985
, “
A Finite Strain Beam Formulation, the Three Dimensional Problem. Part I
,”
Comp. Meth. Mech. Eng.
49
(
1
), pp.
55
70
.10.1016/0045-7825(85)90050-7
2.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
Three Dimensional Finite Strain Rod Model. Part II: Computational Aspects
,”
Comp. Meth. Mech. Eng.
58
(
1
), pp.
79
116
.10.1016/0045-7825(86)90079-4
3.
Ren
,
H.
,
2014
, “
A Computationally Efficient and Robust Geometrically-Exact Curved Beam Formulation for Multibody Systems
,”
IMSD2014-ACMD2014
, June 30–July 3,
Bushan, Korea
, Paper No. 0228.
4.
Bauchau
,
O. A.
,
Shilei
,
H.
,
Mikkola
,
A.
, and
Matikainen
,
M. K.
,
2014
, “
Comparison of the Absolute Nodal Coordinate Formulation and Geometrically Exact Formulations for Beams
,”
Multibody Sys. Dyn.
,
32
(
1
), pp.
67
85
.10.1007/s11044-013-9374-7
5.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
123
(
4
), pp.
606
613
.10.1115/1.1410100
6.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implements and Applications
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
614
621
.10.1115/1.1410099
7.
Shabana
,
A. A.
,
2008
,
Computational Continuum Mechanics
,
Cambridge University Press
,
Cambridge
, pp.
270
272
.
8.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2007
, “
A Curved Beam Element in the Analysis of Flexible Multi-Body Systems Using the Absolute Nodal Coordinates
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
221
(2), pp.
219
231
.
9.
Von Dombrowski
,
S.
,
2002
, “
Analysis of Large Flexible Body Deformation in Multi-Body Systems Using Absolute Coordinates
,”
Multibody Sys. Dyn.
8
(
4
), pp.
409
432
.10.1023/A:1021158911536
10.
Sedov
,
L. I.
,
1996
,
Mechanics of Continuous Media
,
3rd ed.
,
World Scientific Publishing Company
, Singapore.
11.
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2008
, “
On the Correction Representation of the Bending and Axial Deformation in the Absolute Nodal Coordinate Formulation With an Elastic Line Approach
,”
J. Sound Vib.
,
318
(
3
), pp.
461
487
.10.1016/j.jsv.2008.04.019
12.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2003
, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
34
(
1–2
), pp.
53
74
.10.1023/B:NODY.0000014552.68786.bc
13.
Romero
,
I.
,
2008
, “
A Comparison of Finite Elements for Nonlinear Beams: The Absolute Nodal Coordinate and Geometrically Exact Formulations
,”
Multibody Sys. Dyn.
,
20
(
1
), pp.
51
68
.10.1007/s11044-008-9105-7
14.
Sugiyama
,
H.
, and
Yamashita
,
H.
,
2011
, “
Spatial Joint Constraints for the Absolute Nodal Coordinate Formulation Using the Non-Generalized Immediate Coordinates
,”
Multibody Sys. Dyn.
,
26
(
1
), pp.
15
36
.10.1007/s11044-010-9236-5
15.
Blevins
,
R. D.
,
1979
,
Formulas for Natural Frequency and Mode Shape
,
R. E. Krieger Publishing
Company,
Malabar, FL
, pp.
109
, 176, 193, and 205.
16.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
109
130
.10.1007/s11071-006-1856-1
You do not currently have access to this content.