This paper investigates the fuzzy predictive control for a class of nonlinear system with constrains under the condition of noise. Based on the fuzzy linearization theory, a class of nonlinear systems can be described by the Takagi–Sugeno (T–S) fuzzy model. The T–S fuzzy model and predictive control are combined to stabilize the proposed class of nonlinear system, and the detailed mathematical derivation is given. Moreover, the designed controller has been optimized even if the system is constrained by output and control input, or perturbed by external disturbances. Finally, numerical simulations including three-dimensional Lorenz system, four-dimensional Chen system and five-dimensional nonlinear system with external disturbances are presented to demonstrate the universality and effectiveness of the proposed scheme. The approach proposed in this paper is simple and easy to implement and also provides reference for relevant nonlinear systems.

References

References
1.
Richalet
,
J.
,
Rault
,
A.
,
Testud
,
J. L.
, and
Papon
,
J.
,
1978
, “
Model Predictive Heuristic Control: Applications to Industrial Processes
,”
Automatica
,
14
(
5
), pp.
413
428
.10.1016/0005-1098(78)90001-8
2.
Zhang
,
H.
,
Shi
,
Y.
, and
Wang
,
J. M.
,
2013
, “
Observer-Based Tracking Controller Design for Networked Predictive Control Systems With Uncertain Markov Delays
,”
Int. J. Control
,
86
(
10
), pp.
1824
1836
.10.1080/00207179.2013.797107
3.
Korda
,
M.
,
Gondhalekar
,
R.
,
Oldewurtel
,
F.
, and
Jones
,
C. N.
,
2014
, “
Stochastic MPC Framework for Controlling the Average Constraint Violation
,”
IEEE Trans. Autom. Control
,
59
(
7
), pp.
1706
1721
.10.1109/TAC.2014.2310066
4.
Kim
,
S. K.
,
Kim
,
J. S.
,
Park
,
C. R.
, and
Lee
,
Y. I.
,
2013
, “
Output-Feedback Model Predictive Controller for Voltage Regulation of a DC/DC Converter
,”
IET Control Theory Appl.
,
7
(
16
), pp.
1959
1968
.10.1049/iet-cta.2013.0115
5.
Patzelt
,
F.
, and
Pawelzik
,
K.
,
2011
, “
Criticality of Adaptive Control Dynamics
,”
Phys. Rev. Lett.
,
107
(
23
), p.
238103
.10.1103/PhysRevLett.107.238103
6.
Zhu
,
D.
, and
Hug
,
G.
,
2014
, “
Decomposed Stochastic Model Predictive Control for Optimal Dispatch of Storage and Generation
,”
IEEE Trans. Smart Grid
,
5
(
4
), pp.
2044
2053
.10.1109/TSG.2014.2321762
7.
Pannocchia
,
G.
,
Wright
,
S. J.
, and
Rawlings
,
J. B.
,
2011
, “
Partial Enumeration MPC: Robust Stability Results and Application to an Unstable CSTR
,”
J. Process Control
,
21
(
10
), pp.
1459
1466
.10.1016/j.jprocont.2011.06.010
8.
Farina
,
M.
,
Betti
,
G.
,
Giulioni
,
L.
, and
Scattolini
,
R.
,
2014
, “
An Approach to Distributed Predictive Control for Tracking-Theory and Applications
,”
IEEE Trans. Control Syst. Technol.
,
22
(
4
), pp.
1558
1566
10.1109/TCST.2013.228840.
9.
Salsbury
,
T.
,
Mhaskar
,
P.
, and
Qin
,
S. J.
,
2013
, “
Predictive Control Methods to Improve Energy Efficiency and Reduce Demand in Buildings
,”
Comput. Chem. Eng.
,
51
, pp.
77
85
.10.1016/j.compchemeng.2012.08.003
10.
Marcos
,
N. I.
,
Forbes
,
J. F.
, and
Guay
,
M.
,
2014
, “
Prediction-Driven Coordination of Distributed MPC Controllers for Linear Unconstrained Dynamic Systems
,”
Int. J. Control
,
87
(
8
), pp.
1496
1512
.10.1080/00207179.2013.877596
11.
Lim
,
J. S.
,
Kim
,
J. S.
, and
Lee
,
Y. I.
,
2014
, “
Robust Tracking Model Predictive Control for Input-Constrained Uncertain Linear Time Invariant Systems
,”
Int. J. Control
,
87
(
1
), pp.
120
130
.10.1080/00207179.2013.823669
12.
Necoara
,
I.
,
De Schutter
,
B.
,
van den Boom
,
T. J. J.
, and
Hellendoorn
,
H.
,
2009
, “
Robust Control of Constrained Max-Plus-Linear Systems
,”
Int. J. Robust Nonlinear Control
,
19
(
2
), pp.
218
242
.10.1002/rnc.1309
13.
Yaramasu
,
V.
,
Rivera
,
M.
,
Narimani
,
M.
,
Wu
,
B.
, and
Rodriguez
,
J.
,
2014
, “
Model Predictive Approach for a Simple and Effective Load Voltage Control of Four-Leg Inverter With an Output LC Filter
,”
IEEE Trans. Ind. Electron.
,
61
(
10
), pp.
5259
5270
.10.1109/TIE.2013.2297291
14.
Rubagotti
,
M.
,
Patrinos
,
P.
, and
Bemporad
,
A.
,
2014
, “
Stabilizing Linear Model Predictive Control Under Inexact Numerical Optimization
,”
IEEE Trans. Autom. Control
,
59
(
6
), pp.
1660
1666
.10.1109/TAC.2013.2293451
15.
Attia
,
R.
,
Orjuela
,
R.
, and
Basset
,
M.
,
2014
, “
Nonlinear Cascade Strategy for Longitudinal Control in Automated Vehicle Guidance
,”
Control Eng. Pract.
,
29
, pp.
225
234
.10.1016/j.conengprac.2014.02.003
16.
Wang
,
Y.
,
Chai
,
T.
,
Fu
,
J.
,
Zhang
,
Y.
, and
Fu
,
Y.
,
2012
, “
Adaptive Decoupling Switching Control Based on Generalised Predictive Control
,”
IET Control Theory Appl.
,
6
(
12
), pp.
1828
1841
.10.1049/iet-cta.2011.0053
17.
Boeck
,
M.
, and
Kugi
,
A.
,
2014
, “
Real-Time Nonlinear Model Predictive Path-Following Control of a Laboratory Tower Crane
,”
IEEE Trans. Control Syst. Technol.
,
23
(
4
), pp.
1461
1473
.10.1109/TCST.2013.2280464
18.
Rhouma
,
A.
,
Bouani
,
F.
,
Bouzouita
,
B.
, and
Ksouri
,
M.
,
2014
, “
Model Predictive Control of Fractional Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031011
.10.1115/1.4026493
19.
Zhang
,
L. G.
, and
Liu
,
X. J.
,
2013
, “
The Synchronization Between Two Discrete-Time Chaotic Systems Using Active Robust Model Predictive Control
,”
Nonlinear Dyn.
,
74
(
4
), pp.
905
910
10.1007/s11071-013-1009-2.
20.
Takagi
,
T.
, and
Sugeno
,
M.
,
1985
, “
Fuzzy Identification of Systems and Its Applications to Modeling and Control
,”
IEEE Trans. Syst. Man Cybern.
,
15
(
1
), pp.
116
132
.10.1109/TSMC.1985.6313399
21.
Chen
,
D. Y.
,
Zhao
,
W. L.
,
Sprott
,
J. C.
, and
Ma
,
X. Y.
,
2013
, “
Application of Takagi–Sugeno Fuzzy Model to a Class of Chaotic Synchronization and Anti-Synchronization
,”
Nonlinear Dyn.
,
73
(
3
), pp.
1495
1505
.10.1007/s11071-013-0880-1
22.
Kruszewski
,
A.
,
Wang
,
R.
, and
Guerra
,
T. M.
,
2008
, “
Nonquadratic Stabilization Conditions for a Class of Uncertain Nonlinear Discrete Time TS Fuzzy Models: A New Approach
,”
IEEE Trans. Autom. Control
,
53
(
2
), pp.
606
611
.10.1109/TAC.2007.914278
23.
Su
,
X. J.
,
Shi
,
P.
,
Wu
,
L. G.
, and
Song
,
Y. D.
,
2013
, “
A Novel Control Design on Discrete-Time Takagi–Sugeno Fuzzy Systems With Time-Varying Delays
,”
IEEE Trans. Fuzzy Syst.
,
21
(
4
), pp.
655
671
.10.1109/TFUZZ.2012.2226941
24.
Chen
,
D. Y.
,
Zhang
,
R. F.
,
Sprott
,
J. C.
, and
Ma
,
X. Y.
,
2012
, “
Synchronization Between Integer-Order Chaotic Systems and a Class of Fractional-Order Chaotic System Based on Fuzzy Sliding Mode Control
,”
Nonlinear Dyn.
,
70
(
2
), pp.
1549
1561
.10.1007/s11071-012-0555-3
25.
Park
,
J. H.
,
2009
, “
A Note on Synchronization Between Two Different Chaotic Systems
,”
Chaos, Solitions Fractals
,
40
(
3
), pp.
1538
1544
.10.1016/j.chaos.2007.09.038
26.
Wu
,
X. J.
, and
Lu
,
Y.
,
2009
, “
Generalized Projective Synchronization of the Fractional-Order Chen Hyperchaotic System
,”
Nonlinear Dyn.
,
57
(
1–2
), pp.
25
35
.10.1007/s11071-008-9416-5
27.
Zhou
,
Q.
,
Chen
,
Z. Q.
, and
Yuan
,
Z. Z.
,
2007
, “
On-Off Intermittency in Continuum Systems Driven by Lorenz System
,”
Physica A
,
383
(
2
), pp.
276
290
.10.1016/j.physa.2007.03.057
28.
Wang
,
B.
,
Xue
,
J. Y.
,
He
,
H. Y.
, and
Zhu
,
D. L.
,
2014
, “
Analysis on a Class of Double-Wing Chaotic System and Its Control Via Linear Matrix Inequality
,”
Acta Phys. Sin.
,
63
(
21
), p.
210502
10.7498/aps.63.210502.
You do not currently have access to this content.