The main goal of this paper is to develop subequation method for solving nonlinear evolution equations of time-fractional order. We use the subequation method to calculate the exact solutions of the time-fractional Burgers, Sharma–Tasso–Olver, and Fisher's equations. Consequently, we establish some new exact solutions for these equations.

References

References
1.
Wu
,
C. C.
,
2011
, “
A Fractional Variational Iteration Method for Solving Fractional Nonlinear Differential Equations
,”
Comput. Math. Appl.
,
61
(
8
), pp.
2186
2190
.10.1016/j.camwa.2010.09.010
2.
El-Sayed
,
A. M. A.
, and
Gaber
,
M.
,
2006
, “
The Adomian Decomposition Method for Solving Partial Differential Equations of Fractal Order in Finite Domains
,”
Phys. Lett. A
,
359
(
3
), pp.
175
182
.10.1016/j.physleta.2006.06.024
3.
Gepreel
,
K. A.
,
2011
, “
The Homotopy Perturbation Method Applied to the Nonlinear Fractional Kolmogorov–Petrovskii–Piskunov Equations
,”
Appl. Math. Lett.
,
24
(
8
), pp.
1428
1434
.10.1016/j.aml.2011.03.025
4.
Cui
,
M.
,
2009
, “
Compact Finite Difference Method for the Fractional Diffusion Equation
,”
J. Comput. Phys.
,
228
(
20
), pp.
7792
7804
.10.1016/j.jcp.2009.07.021
5.
Oldman
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
NY
.
6.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
NY
.
7.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
CA
.
8.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
Amsterdam, The Netherlands
.
9.
Zhang
,
S.
,
Zong
,
Q.-A.
,
Liu
,
D.
, and
Gao
,
Q.
,
2010
, “
A Generalized Exp-Function Method for Fractional Riccati Differential Equations
,”
Commun. Fractional Calculus
,
1
(
1
), pp.
48
51
.
10.
Bekir
,
A.
,
Güner
,
Ö.
, and
Cevikel
,
A. C.
,
2013
, “
Fractional Complex Transform and Exp-Function Methods for Fractional Differential Equations
,”
Abstr. Appl. Anal.
,
2013
, p.
426462
.10.1155/2013/426462
11.
Zheng
,
B.
,
2012
, “
(G’/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics
,”
Commun. Theor. Phys.
,
58
(
5
), pp.
623
630
.10.1088/0253-6102/58/5/02
12.
Gepreel
,
K. A.
, and
Omran
,
S.
,
2012
, “
Exact Solutions for Nonlinear Partial Fractional Differential Equations
,”
Chin. Phys. B
,
21
(
11
), p.
110204
.10.1088/1674-1056/21/11/110204
13.
Shang
,
N.
, and
Zheng
,
B.
,
2013
, “
Exact Solutions for Three Fractional Partial Differential Equations by the (G'/G) Method
,”
Int. J. Appl. Math.
,
43
(
3
), pp.
114
119
.
14.
Lu
,
B.
,
2012
, “
The First Integral Method for Some Time Fractional Differential Equations
,”
J. Math. Anal. Appl.
,
395
(
2
), pp.
684
693
.10.1016/j.jmaa.2012.05.066
15.
Bekir
,
A.
,
Güner
,
Ö.
, and
Unsal
,
Ö.
, 2014, “
The First Integral Method for Exact Solutions of Nonlinear Fractional Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
, (in press).10.1115/1.4028065
16.
Bulut
,
H.
, and
Pandir
,
Y.
,
2013
, “
Modified Trial Equation Method to the Nonlinear Fractional Sharma–Tasso–Olever Equation
,”
Int. J. Model. Optim.
,
3
(
4
), pp.
353
357
.10.7763/IJMO.2013.V3.297
17.
Bulut
,
H.
,
Baskonus
,
H. M.
, and
Pandir
,
Y.
,
2013
, “
The Modified Trial Equation Method for Fractional Wave Equation and Time Fractional Generalized Burgers Equation
,”
Abstr. Appl. Anal.
,
2013
, p.
636802
.10.1155/2013/636802
18.
Guo
,
S.
,
Mei
,
L.
,
Li
,
Y.
, and
Sun
,
Y.
,
2012
, “
The Improved Fractional Sub-Equation Method and Its Applications to the Space–Time Fractional Differential Equations in Fluid Mechanics
,”
Phys. Lett. A
,
376
(
4
), pp.
407
411
.10.1016/j.physleta.2011.10.056
19.
Tong
,
B.
,
He
,
Y.
,
Wei
,
L.
, and
Zhang
,
X.
,
2012
, “
A Generalized Fractional Sub-Equation Method for Fractional Differential Equations With Variable Coefficients
,”
Phys. Lett. A
,
376
(
38–39
), pp.
2588
2590
.10.1016/j.physleta.2012.07.018
20.
Jafari
,
H.
,
Tajadodi
,
H.
,
Kadkhoda
,
N.
, and
Baleanu
,
D.
,
2013
, “
Fractional Sub-Equation Method for Cahn–Hilliard and Klein–Gordon Equations
,”
Abstr. Appl. Anal.
,
2013
, p.
587179
.10.1155/2013/587179
21.
Lu
,
B.
,
2012
, “
Bäcklund Transformation of Fractional Riccati Equation and Its Applications to Nonlinear Fractional Partial Differential Equations
,”
Phys. Lett. A
,
376
(
28–29
), pp.
2045
2048
.10.1016/j.physleta.2012.05.013
22.
Zhang
,
Y.
,
2013
, “
Time-Fractional Camassa–Holm equation: Formulation and Solution Using Variational Methods
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041020
.10.1115/1.4024970
23.
Jafari
,
H.
,
Tajadodi
,
H.
, and
Baleanu
,
D.
,
2014
, “
Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Fractional Evolution Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021019
.10.1115/1.4025770
24.
Doha
,
E.
,
Bhrawy
,
A.
, and
Ezz-Eldien
,
S.
, 2014, “
An Efficient Legendre Spectral Tau Matrix Formulation for Solving Fractional Sub-Diffusion and Reaction Sub-Diffusion Equations
,”
ASME J. Comput. Nonlinear Dyn.
, (in press).10.1115/1.4027944
25.
Zhang
,
S.
, and
Zhang
,
H.-Q.
,
2011
, “
Fractional Sub-Equation Method and Its Applications to Nonlinear Fractional PDEs
,”
Phys. Lett. A
,
375
(
7
), pp.
1069
1073
.10.1016/j.physleta.2011.01.029
26.
Ibrahim
,
R. W.
,
2012
, “
Fractional Complex Transforms for Fractional Differential Equations
,”
Adv. Differ. Equations
,
2012
(
1
), p.
192
.10.1186/1687-1847-2012-192
27.
Luchko
,
Y.
, and
Gorenflo
,
R.
,
1999
, “
An Operational Method for Solving Fractional Differential Equations With the Caputo Derivatives
,”
Acta Math. Vietnam.
,
24
(
2
), pp.
207
233
.
28.
Liao
,
J.
,
Chen
,
F.
, and
Hu
,
S.
,
2013
, “
Existence of Solutions for Fractional Impulsive Neutral Functional Differential Equations With in Finite Delay
,”
Neurocomputing
,
122
, pp.
156
162
.10.1016/j.neucom.2013.06.034
29.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach Science Publishers
,
Switzerland
.
30.
Jumarie
,
G.
,
2006
, “
Modified Riemann–Liouville Derivative and Fractional Taylor Series of Nondifferentiable Functions Further Results
,”
Comput. Math. Appl.
,
51
(
9–10
), pp.
1367
1376
.10.1016/j.camwa.2006.02.001
31.
Jumarie
,
G.
,
2007
, “
Fractional Partial Differential Equations and Modified Riemann-Liouville Derivative New Methods for Solution
,”
J. Appl. Math. Comput.
,
24
(
1–2
), pp.
31
48
.10.1007/BF02832299
32.
Li
,
Z. B.
, and
He
,
J. H.
,
2010
, “
Fractional Complex Transform for Fractional Differential Equations
,”
Math. Comput. Appl.
,
15
(
5
), pp.
970
973
.
33.
Inc
,
M.
,
2008
, “
The Approximate and Exact Solutions of the Space- and Time-Fractional Burgers Equations With Initial Conditions by Variational Iteration Method
,”
J. Math. Anal. Appl.
,
345
(
1
), pp.
476
484
.10.1016/j.jmaa.2008.04.007
34.
Bekir
,
A.
, and
Güner
,
Ö.
,
2013
, “
Exact Solutions of Nonlinear Fractional Differential Equations by (G'/G)-Expansion Method
,”
Chin. Phys. B
,
22
(
11
), p.
110202
10.1088/1674-1056/22/11/110202
35.
Song
,
L. N.
,
Wang
,
Q.
, and
Zhang
,
H. Q.
,
2009
, “
Rational Approximation Solution of the Fractional Sharma-Tasso-Olver Equation
,”
J. Comput. Appl. Math.
,
224
(
1
), pp.
210
218
.10.1016/j.cam.2008.04.033
36.
Jafari
,
H.
,
Tajadodi
,
H.
,
Baleanu
,
D.
,
Al-Zahrani
,
A. A.
,
Alhamed
,
Y. A.
, and
Zahid
,
A. H.
,
2013
, “
Fractional Sub-Equation Method for the Fractional Generalized Reaction Duffing Model and Nonlinear Fractional Sharma–Tasso–Olver Equation
,”
Cent. Eur. J. Phys.
,
11
(
10
), pp.
1482
1486
.10.2478/s11534-013-0203-7
37.
Güner
,
Ö.
, and
Çevikel
,
A. C.
,
2014
, “
A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations
,”
The Sci. World J.
, 2014, p. 489495.10.1155/2014/489495
38.
Khan
,
N. A.
,
Ayaz
,
M.
,
Jin
,
L.
, and
Yildirim
,
A.
,
2011
, “
On Approximate Solutions for the Time-Fractional Reaction–Diffusion Equation of Fisher Type
,”
Int. J. Phys. Sci.
,
6
(
10
), pp.
2483
2496
.10.5897/IJPS11.563
39.
Bekir
,
A.
,
Güner
,
Ö.
, and
Cevikel
,
A. C.
,
2014
, “
Using a Complex Transformation With Exp-Function Method to get an Exact Solutions for Fractional Differential Equation
,”
Curr. Adv. Math. Research
,
1
(
1
), pp.
35
44
.
40.
Rida
,
S. Z.
,
El-Sayed
,
A. M. A.
, and
Arafa
,
A. A. M.
,
2012
, “
On the Solutions of Time-Fractional Reaction–Diffusion Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
12
), pp.
3847
3854
.10.1016/j.cnsns.2010.02.007
You do not currently have access to this content.