Bifurcations and chaotic motions of a class of mechanical system subjected to a superharmonic parametric excitation or a nonlinear periodic parametric excitation are studied, respectively, in this paper. Chaos arising from the transverse intersections of the stable and unstable manifolds of the homoclinic and heteroclincic orbits is analyzed by Melnikov's method. The critical curves separating the chaotic and nonchaotic regions are plotted. Chaotic dynamics are compared for these systems with a periodic parametric excitation or a superharmonic parametric excitation, or a nonlinear periodic parametric excitation. Especially, some new dynamical phenomena are presented for the system with a nonlinear periodic parametric excitation.

References

References
1.
Winkler
,
E.
,
1867
, “
Die Lehre von der Elastizitat und Festigkeit
,” Dominicus, Prague.
2.
Pasternak
,
P. L.
,
1954
, “
On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants (in Russian), Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture, USSR
,” Moscow.
3.
Lenci
,
S.
, and
Tarantino
,
A. M.
,
1996
, “
Chaotic Dynamics of an Elastic Beam Resting on a Winkler-Type Soil
,”
Chaos Solitions Fractals
,
7
(
10
), pp.
1601
1614
.10.1016/S0960-0779(96)00030-6
4.
Lenci
,
S.
,
Menditto
,
G.
, and
Tarantino
,
A. M.
,
1999
, “
Homoclinic and Heteroclinic Bifurcations in the Non-Linear Dynamics of a Beam Resting on an Elastic Substrate
,”
Int. J. Non-linear Mech.
,
34
(
4
), pp.
615
632
.10.1016/S0020-7462(98)00001-8
5.
De
,
S. K.
, and
Aluru
,
N. R.
,
2005
, “
Complex Oscillations and Chaos in Electrostatic Microelectromechanical Systems Under Superharmonic Excitations
,”
Phys. Rev. Lett.
,
94
(
20
), p.
204101
.10.1103/PhysRevLett.94.204101
6.
Ding
,
H.
, and
Zu
,
J. W.
,
2013
, “
Periodic and Chaotic Responses of an Axially Accelerating Viscoelastic Beam Under Two-Frequency Excitations
,”
ASME Int. J. Appl. Mech.
,
5
(
2
), p.
1350019
.10.1142/S1758825113500191
7.
Chen
,
X. W.
,
Jing
,
Z. J.
, and
Fu
,
X. L.
,
2014
, “
Chaos Control in a Pendulum System With Excitations and Phase Shift
,”
Nonlinear Dyn.
,
78
(1), pp.
317
327
.10.1007/s11071-014-1441-y
8.
Yao
,
M. H.
, and
Zhang
,
W.
,
2013
, “
Multipulse Heteroclinic Orbits and Chaotic Dynamics of the Laminated Composite Piezoelectric Rectangular Plate
,”
Discrete Dyn. Nat. Soc.
,
2013
(
1–27
), p.
958219
10.1155/2013/958219.
9.
Ng
,
L.
, and
Rand
,
R.
,
2003
, “
Nonlinear Effects on Coexistence Phenomenon in Parametric Excitation
,”
Nonlinear Dyn.
,
31
(
1
), pp.
73
89
.10.1023/A:1022184114576
10.
Bridge
,
J.
,
Rand
,
R.
, and
Sah
,
S. M.
,
2009
, “
Slow Passage Through Multiple Parametric Resonance Tongues
,”
J. Vib. Control
,
15
(
10
), pp.
1581
1600
.10.1177/1077546309103263
11.
Wiggins
,
S.
,
1990
,
Introduction to Applied Non-Linear Dynamical Systems and Chaos
,
Springer
,
New York
.
12.
Guckenheimer
,
J.
, and
Holmes
,
P. J.
,
1983
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields
,
Springer
,
New York
10.1007/978-1-4612-1140-2.
You do not currently have access to this content.