This paper presents a closed-form solution for the direct dynamic model of a flight simulator motion base. The motion base consists of a six degree-of-freedom (6DOF) Stewart platform robotic manipulator driven by electromechanical actuators. The dynamic model is derived using the Newton–Euler method. Our derivation is closed to that of Dasgupta and Mruthyunjaya (1998, “Closed Form Dynamic Equations of the General Stewart Platform Through the Newton–Euler Approach,” Mech. Mach. Theory, 33(7), pp. 993–1012), however, we give some insights into the structure and properties of those equations, i.e., a kinematic model of the universal joint, inclusion of electromechanical actuator dynamics and the full dynamic equations in matrix form in terms of Euler angles and platform position vector. These expressions are interesting for control, simulation, and design of flight simulators motion bases. Development of a inverse dynamic control law by using coefficients matrices of dynamic equation and real aircraft trajectories are implemented and simulation results are also presented.

References

References
1.
FAA-Federal Aviation Administration
,
2012
, 14 CFR FAR Part 60, Washington, DC.
2.
Nahon
,
M.
, and
Reid
,
L. D.
,
1990
, “
Simulator Motion Drive Algorithms—A Designer's Perspective
,”
J. Guid., Control, Dyn.
,
13
(
2
), pp.
702
709
.
3.
Stewart
,
D.
,
1965
, “
A Platform With 6 Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
15
), pp.
371
386
.10.1243/PIME_PROC_1965_180_029_02
4.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T.
,
1998
, “
Closed Form Dynamic Equations of the General Stewart Platform Through the Newton–Euler Approach
,”
Mech. Mach. Theory
,
33
(
7
), pp.
993
1012
.10.1016/S0094-114X(97)00087-6
5.
Lebret
,
G.
,
Liu
,
K.
, and
Lewis
,
L.
,
1993
, “
Dynamic Analysis and Control of a Stewart Platform Manipulator
,”
J. Rob. Syst.
,
10
(
5
), pp.
629
655
.10.1002/rob.4620100506
6.
Liu
,
M.-J.
,
Li
,
C.-X.
, and
Li
,
C.-N.
,
2000
, “
Dynamics Analysis of the Gough-Stewart Platform Manipulator
,”
IEEE Trans. Rob. Autom.
,
16
(
1
), pp.
94
98
.
7.
Gallardo
,
J.
,
Rico
,
J.
,
Frisoli
,
A.
,
Checcacci
,
D.
, and
Bergamasco
,
M.
,
2003
, “
Dynamics of Parallel Manipulators by Means of Screw Theory
,”
Mech. Mach. Theory
,
38
(
11
), pp.
1113
1131
.10.1016/S0094-114X(03)00054-5
8.
Guo
,
H.
, and
Li
,
H.
,
2006
, “
Dynamics Analysis and Simulation of Six Degree of Freedom Stewart Platform Manipulator
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
1
), pp.
61
72
.10.1243/095440605X32075
9.
Lopes
,
A.
,
2009
, “
Dynamic Modeling of a Stewart Platform Using the Generalized Momentum Approach
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
8
), pp.
3389
3401
.10.1016/j.cnsns.2009.01.001
10.
Becerra-Vargas
,
M.
, and
Belo
,
E.
,
2011
, “
Robust Control of a Flight Simulator Motion Base
,”
J. Guid., Control, Dyn.
,
34
(
5
), pp.
1519
1528
.10.2514/1.53301
11.
Becerra-Vargas
,
M.
,
2009
, “
Controle de uma Plataforma de Movimento de um Simulador de voo,
” Ph.D. thesis, Doutorado em engenharia mecnica, Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, São Paulo, Brazil.
You do not currently have access to this content.