Because the V-belt continuously variable transmission (CVT) system spurred by permanent magnet synchronous motor (PMSM) has unknown nonlinear and time-varying properties, the better control performance design for the linear control design is a time consuming procedure. In order to conquer difficulties for design of the linear controllers, the hybrid recurrent Laguerre orthogonal polynomials neural network (NN) control system, which has online learning ability to react to unknown nonlinear and time-varying characteristics, is developed for controlling PMSM servo-driven V-belt CVT system with the lumped nonlinear load disturbances. The hybrid recurrent Laguerre orthogonal polynomials NN control system consists of an inspector control, a recurrent Laguerre orthogonal polynomials NN control with adaptation law, and a recouped control with estimation law. Moreover, the adaptation law of online parameters in the recurrent Laguerre orthogonal polynomials NN is originated from Lyapunov stability theorem. Additionally, two varied learning rates of the parameters by means of modified particle swarm optimization (PSO) are posed in order to achieve better convergence. At last, comparative studies shown by experimental results are illustrated in order to verify the effectiveness of the proposed control scheme.

References

References
1.
Tseng
,
C. Y.
,
Chen
,
L. W.
,
Lin
,
Y. T.
, and
Li
,
J. Y.
,
2008
, “
A Hybrid Dynamic Simulation Model for Urban Scooters With a Mechanical-Type CVT
,”
IEEE International Conference on Automation and Logistics
, Qingdao, China, September 2–4, pp.
519
519
.
2.
Tseng
,
C. Y.
,
Lue
,
Y. F.
,
Lin
,
Y. T.
,
Siao
,
J. C.
,
Tsai
,
C. H.
, and
Fu
,
L. M.
,
2009
, “
Dynamic Simulation Model for Hybrid Electric Scooters
,”
IEEE International Symposium on Industrial Electronics
, Seoul, Korea, July 24, pp.
1464
1469
.
3.
Guzzella
,
L.
, and
Schmid
,
A. M.
,
1995
, “
Feedback Linearization of Spark-Ignition Engines With Continuously Variable Transmissions
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
54
58
.10.1109/87.370710
4.
Kim
,
W.
, and
Vachtsevanos
,
G.
,
2000
, “
Fuzzy Logic Ratio Control for a CVT Hydraulic Module
,”
IEEE Symposium on Intelligent Control
, Rio, Greece, pp.
151
156
.
5.
Carbone
,
G.
,
Mangialardi
,
L.
,
Bonsen
,
B.
,
Tursi
,
C.
, and
Veenhuizen
,
P. A.
,
2007
, “
CVT Dynamics: Theory and Experiments
,”
Mech. Mach. Theory
,
42
(
4
), pp.
409
428
.10.1016/j.mechmachtheory.2006.04.012
6.
Sattler
,
H.
,
1999
, “
Efficiency of Metal Chain and V-Belt CVT
,”
International Conference on Continuously Variable Power Transmissions
, Eindhoven, The Netherlands, pp.
99
104
.
7.
Carbone
,
G.
,
Mangialardi
,
L.
, and
Mantriota
,
G.
,
2005
, “
The Influence of Pulley Deformations on the Shifting Mechanisms of MVB-CVT
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
103
113
.10.1115/1.1825443
8.
Srivastava
,
N.
, and
Haque
,
I.
,
2009
, “
A Review on Belt and Chain Continuously Variable Transmissions (CVT): Dynamics and Control
,”
Mech. Mach. Theory
,
44
(
1
), pp.
19
41
.10.1016/j.mechmachtheory.2008.06.007
9.
Novotny
,
D. W.
, and
Lipo
,
T. A.
,
1996
,
Vector Control and Dynamics of AC Drives
,
Oxford University
,
New York
.
10.
Leonhard
,
W.
,
1996
,
Control of Electrical Drives
,
2nd ed.
,
Springer-Verlag
,
Berlin
.
11.
Lin
,
F. J.
,
1997
, “
Real-Time IP Position Controller Design With Torque Feedforward Control for PM Synchronous Motor
,”
IEEE Trans. Ind. Electron.
,
4
(
3
), pp.
398
407
.
12.
Narendra
,
K. S.
, and
Parthasarathy
,
K.
,
1990
, “
Identification and Control of Dynamical Systems Using Neural Networks
,”
IEEE Trans. Neural Networks
,
1
(
1
), pp.
4
26
.10.1109/72.80202
13.
Sastry
,
P. S.
,
Santharam
,
G.
, and
Unnikrishnan
,
K. P.
,
1994
, “
Memory Neural Networks for Identification and Control of Dynamical Systems
,”
IEEE Trans. Neural Networks
,
5
(
2
), pp.
306
319
.10.1109/72.279193
14.
Grino
,
R.
,
Gembrano
,
G.
, and
Torras
,
C.
,
2000
, “
Nonlinear System Identification Using Additive Dynamic Neural Networks–Two On-Line Approaches
,”
IEEE Trans. Circuits Syst. I
,
47
(
2
), pp.
150
165
.10.1109/81.828569
15.
Mao
,
X.
, and
Hu
,
H.
,
2010
, “
Stability and Bifurcation Analysis of a Network of Four Neurons With Time Delays
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
041001
.10.1115/1.4000317
16.
Guo
,
D.
, and
Zhang
,
Y.
,
2014
, “
Neural Dynamics and Newton–Raphson Iteration for Nonlinear Optimization
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021016
.10.1115/1.4025748
17.
Pao
,
Y. H.
,
1989
,
Adaptive Pattern Recognition and Neural Networks
,
Addison-Wesley
,
Boston, MA
.
18.
Pao
,
Y. H.
, and
Philips
,
S. M.
,
1995
, “
The Functional Link Net and Learning Optimal Control
,”
Neurocomputing
,
9
(
2
), pp.
149
164
.10.1016/0925-2312(95)00066-F
19.
Patra
,
J. C.
,
Pal
,
R. N.
,
Chatterji
,
B. N.
, and
Panda
,
G.
,
1999
, “
Identification of Nonlinear Dynamic Systems Using Functional Link Artificial Neural Networks
,”
IEEE Trans. Syst. Man Cybern. Part B, Cybern.
,
29
(
2
), pp.
254
262
.10.1109/3477.752797
20.
Aadaleesan
,
P.
,
Miglan
,
N.
,
Sharma
,
R.
, and
Saha
,
P.
,
2008
, “
Nonlinear System Identification Using Wiener Type Laguerre–Wavelet Network Model
,”
Chem. Eng. Sci.
,
63
(
15
), pp.
3932
3941
.10.1016/j.ces.2008.04.043
21.
Mahmoodi
,
S.
,
Poshtan
,
J.
,
Jahed-Motlagh
,
M. R.
, and
Montazeri
,
A.
,
2009
, “
Nonlinear Model Predictive Control of a PH Neutralization Process Based on Wiener-Laguerre Model
,”
Chem. Eng. J.
,
146
(
3
), pp.
328
337
.10.1016/j.cej.2008.06.010
22.
Zou
,
A.
, and
Xiao
,
X.
,
2009
, “
An Asynchronous Encryption Arithmetic Based on Laguerre Chaotic Neural Networks
,” IEEE WRI Global Congress on Intelligent Systems, Xiamen, China, pp.
36
39
.
23.
Patra
,
J. C.
,
Bornand
,
C.
, and
Meher
,
P. K.
,
2009
, “
Laguerre Neural Network-Based Smart Sensors for Wireless Sensor Networks
,”
IEEE Instrumentation and Measurement Technology Conference
, Singapore, pp.
832
837
.
24.
Patra
,
J. C.
,
Meher
,
P. K.
, and
Chakraborty
,
G.
,
2011
, “
Development of Laguerre Neural-Network-Based Intelligent Sensors for Wireless Sensor Networks
,”
IEEE Trans. Instrum. Meas.
,
60
(
3
), pp.
725
734
.10.1109/TIM.2010.2082390
25.
Chow
,
T. W. S.
, and
Fang
,
Y.
,
1998
, “
A Recurrent Neural-Network-Based Real-Time Learning Control Strategy Applying to Nonlinear Systems With Unknown Dynamics
,”
IEEE Trans. Ind. Electron.
,
45
(
1
), pp.
151
161
.10.1109/41.661316
26.
Brdys
,
M. A.
, and
Kulawski
,
G. J.
,
1999
, “
Dynamic Neural Controllers for Induction Motor
,”
IEEE Trans. Neural Networks
,
10
(
2
), pp.
340
355
.10.1109/72.750564
27.
Li
,
X. D.
,
Ho
,
J. K. L.
, and
Chow
,
T. W. S.
,
2005
, “
Approximation of Dynamical Time-Variant Systems by Continuous-Time Recurrent Neural Networks
,”
IEEE Trans. Circuits Syst. II
,
52
(
10
), pp.
656
660
.
28.
Lu
,
C. H.
, and
Tsai
,
C. C.
,
2008
, “
Adaptive Predictive Control With Recurrent Neural Network for Industrial Processes: An Application to Temperature Control of a Variable-Frequency Oil-Cooling Machine
,”
IEEE Trans. Ind. Electron.
,
55
(
3
), pp.
1366
1375
.10.1109/TIE.2007.896492
29.
Lin
,
C. H.
,
2014
, “
Adaptive Recurrent Chebyshev Neural Network Control for Permanent Magnet Synchronous Motor Servo-Drive Electric Scooter
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
228
(
9
), pp.
699
714
.
30.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE International Conference on Neural Networks
, Perth, WA, pp.
1942
1948
.
31.
Goldberg
,
D.
,
2002
,
The Design of Innovation: Lessons from and for Competent Genetic Algorithms
,
Kluwer Academic Publishers
,
Norwell, MA
.
32.
Clerc
,
M.
, and
Kennedy
,
J.
,
2002
, “
The Particle Swarm-Explosion, Stability, and Convergence in a Multi-Dimensional Complex space
,”
IEEE Trans. Evol. Comput.
,
6
(
1
), pp.
58
73
.10.1109/4235.985692
33.
Carvalho
,
A. B.
,
Pozo
,
A.
, and
Vergilio
,
S. R.
,
2010
, “
A Symbolic Fault-Prediction Model Based on Multi Objective Particle Swarm Optimization
,”
J. Syst. Software
,
83
(
5
), pp.
868
882
.10.1016/j.jss.2009.12.023
34.
Li
,
Q.
,
Chen
,
W.
,
Wang
,
Y.
,
Liu
,
S.
, and
Jia
,
J.
,
2011
, “
Parameter Identification for PEM Fuel-Cell Mechanism Model Based on Effective Informed Adaptive Particle Swarm Optimization
,”
IEEE Trans. Ind. Electron.
,
58
(
6
), pp.
2410
2419
.10.1109/TIE.2010.2060456
35.
Cheng
,
C. T.
,
Liao
,
S. L.
,
Tang
,
Z. T.
, and
Zhao
,
M. Y.
,
2009
, “
Comparison of Particle Swarm Optimization and Dynamic Programming for Large Scale Hydro Unit Load Dispatch
,”
Energy Convers. Manage.
,
50
(
12
), pp.
3007
3014
.10.1016/j.enconman.2009.07.020
36.
Liao
,
Y. X.
,
She
,
J. H.
, and
Wu
,
M.
,
2009
, “
Integrated Hybrid-PSO and Fuzzy-NN Decoupling Control for Temperature of Reheating Furnace
,”
IEEE Trans. Ind. Electron.
,
56
(
7
), pp.
2704
2714
.10.1109/TIE.2009.2019753
37.
Zitzler
,
E.
,
Deb
,
K.
, and
Thiele
,
L.
,
2000
, “
Comparison of Multi Objective Evolutionary Algorithms: Empirical Results
,”
Evol. Comput.
,
8
(
2
), pp.
173
195
.10.1162/106365600568202
38.
Eberhart
,
R. C.
, and
Shi
,
Y.
,
1998
, “
Comparison Between Genetic Algorithms and Particle Swarm Optimization
,”
Proceedings of 7th International Conference Evolutionary Programming VII
, Diego, CA, pp.
611
616
.
39.
Eberhart
,
R. C.
, and
Shi
,
Y.
,
2000
, “
Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization
,”
Proceedings of Congress on Evolutionary Computation
, La Jolla, CA, pp.
84
88
.
40.
Gao
,
H.
, and
Xu
,
W.
,
2011
, “
A New Particle Swarm Algorithm and Its Globally Convergent Modifications
,”
IEEE Trans. Syst. Man Cybern., Part B: Cybern.
,
41
(
5
), pp.
1334
1351
.10.1109/TSMCB.2011.2144582
41.
Sun
,
T. Y.
,
Liu
,
C. C.
,
Tsai
,
S. J.
,
Hsieh
,
S. T.
, and
Li
,
K. Y.
,
2011
, “
Cluster Guide Particle Swarm Optimization (CGPSO) for Underdetermined Blind Source Separation With Advanced Conditions
,”
IEEE Trans. Evol. Comput.
,
15
(
6
), pp.
798
811
.10.1109/TEVC.2010.2049361
42.
Zhang
,
Y.
,
Xiong
,
X.
, and
Zhang
,
Q. D.
,
2013
, “
An Improved Self-Adaptive PSO Algorithm With Detection Function for Multimodal Function Optimization Problems
,”
Math. Prob. Eng.
,
2013
, p.
716952
.
43.
Lin
,
C. H.
,
Chiang
,
P. H.
,
Tseng
,
C. S.
,
Lin
,
Y. L.
, and
Lee
,
M. Y.
,
2010
, “
Hybrid Recurrent Fuzzy Neural Network Control for Permanent Magnet Synchronous Motor Applied in Electric Scooter
,”
6th International Power Electron Conference
, Sapporo, Japan, pp.
1371
1376
.
44.
Lin
,
C. H.
, and
Lin
,
C. P.
,
2012
, “
The Hybrid RFNN Control for a PMSM Drive System Using Rotor Flux Estimator
,”
Int. J. Power Electron.
,
4
(
1
), pp.
33
48
.10.1504/IJPELEC.2012.044150
45.
Lin
,
C. H.
,
2014
, “
Hybrid Recurrent Wavelet Neural Network Control of PMSM Servo-Drive System for Electric Scooter
,”
Int. J. Control Autom. Syst.
,
12
(
1
), pp.
177
187
.10.1007/s12555-012-0190-2
46.
Lin
,
C. H.
,
2014
, “
A Novel Hybrid Recurrent Wavelet Neural Network Control of PMSM Servo-Drive System for Electric Scooter
,”
Turkish J. Electr. Eng. Comput. Sci.
,
22
(
4
), pp.
1056
1175
.10.3906/elk-1204-1
47.
Lin
,
C. H.
,
2015
, “
Novel Adaptive Recurrent Legendre Neural Network Control for PMSM Servo-Drive Electric Scooter
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
1
), p.
011010
.10.1115/1.4027507
48.
Ziegler
,
J. G.
, and
Nichols
,
N. B.
,
1942
, “
Optimum Settings for Automatic Controllers
,”
ASME Trans.
,
64
, pp.
759
768
.
49.
Astrom
,
K. J.
, and
Hagglund
,
T.
,
1995
,
PID Controller: Theory, Design, and Tuning
,
Instrument Society of America
,
Research Triangle Park, NC
.
50.
Hägglund
,
T.
, and
Åström
,
K. J.
,
2002
, “
Revisiting the Ziegler-Nichols Tuning Rules for PI Control
,”
Asian J. Controls
,
4
(
4
), pp.
364
380
.10.1111/j.1934-6093.2002.tb00076.x
51.
Hägglund
,
T.
, and
Åström
,
K. J.
,
2004
, “
Revisiting the Ziegler-Nichols Tuning Rules for PI Control—Part II: The Frequency Response Method
,”
Asian J. Controls
,
6
(
4
), pp.
469
482
.10.1111/j.1934-6093.2004.tb00368.x
52.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
53.
Astrom
,
K. J.
, and
Wittenmark
,
B.
,
1995
,
Adaptive Control
,
Addison Wesley
,
New York
.
You do not currently have access to this content.