A new formulation for plates/shells with large deformations and large rotations is derived from the principles of continuum mechanics and calculated using the absolute nodal coordinate formulation (ANCF) techniques. A class of triangular elements is proposed to discretize the plate/shell formulation, which does not suffer from shear locking or membrane locking issue, and full quadrature can be performed to evaluate the integrals of each element. The adaptability of triangular elements enables the current approach to be applied to plates and shells with complicated shapes and variable thicknesses. The discretized mass matrix is constant, and the elastic force and stiffness matrix are polynomials of the generalized coordinates with constant coefficients. All the coefficients can be evaluated accurately beforehand, and numerical quadrature is not required in each time step of the simulation, which makes the current approach superior in numerical efficiency to most other approaches. The accuracy, robustness, and adaptability of the current approach are validated using both finite element benchmarks and multibody system standard tests.

References

References
1.
MacNeal
,
R.
,
1978
, “
A Simple Quadrilateral Shell Element
,”
Comput. Struct.
,
8
(
2
), pp.
175
183
.10.1016/0045-7949(78)90020-2
2.
Hughes
,
T. J. R.
, and
Liu
,
W. K.
,
1981
, “
Nonlinear Finite Element Analysis of Shells: Part I. Three Dimensional Shells
,”
Comput. Methods Appl. Mech. Eng.
,
26
(
3
), pp.
331
362
.10.1016/0045-7825(81)90121-3
3.
Belytschko
,
T.
, and
Tsay
,
C. S.
,
1983
, “
A Stabilization Procedure for the Quadrilateral Plate Element With One-Point Quadrature
,”
Int. J. Numer. Methods Eng.
,
19
(
3
), pp.
405
419
.10.1002/nme.1620190308
4.
Belytschko
,
T.
,
Wong
,
B. L.
, and
Chiang
,
H. Y.
,
1992
, “
Advances in One-Point Quadrature Shell Elements
,”
Comput. Methods Appl. Mech. Eng.
,
96
(
1
), pp.
93
107
.10.1016/0045-7825(92)90100-X
5.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
,
2000
,
Non-Linear Finite Elements for Continua and Structures
,
John Wiley and Sons
,
New York
.
6.
Crisfield
,
M. A.
,
1991
,
Non-Linear Finite Element Analysis of Solids and Structures
, Vol.
2
,
Wiley
,
New York
, pp.
260
307
.
7.
Dmitrochenko
,
O. N.
, and
Pogorelov
,
D. Y.
,
2003
, “
Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
10
(
1
), pp.
17
43
.10.1023/A:1024553708730
8.
Dmitrochenko
,
O.
,
2008
, “
Finite Elements Using Absolute Nodal Coordinates for Large-Deformation Flexible Multibody Dynamics
,”
J. Comput. Appl. Math.
,
215
(
2
), pp.
368
377
.10.1016/j.cam.2006.04.063
9.
Shabana
,
A. A.
,
2008
,
Computational Continuum Mechanics
,
Cambridge University
,
Cambridge
, pp.
272
275
.10.1017/CBO9780511611469
10.
Sedov
,
L. I.
,
1996
,
Mechanics of Continuous Media
,
3rd ed.
,
World Scientific
, Singapore.
11.
Barber
,
J. R.
,
2002
,
Elasticity
,
2nd ed.
,
Kluwer Academic
, Dordrecht, p.
36
.
12.
Edelsbrunner
,
H.
,
2000
, “
Triangulations and Meshes in Computational Geometry
,”
Acta Numer.
,
9
, pp.
1
81
.
13.
Delaunay
,
B.
,
1934
, “
Sur la Sphère Vide
,”
Izv. Akad. Nauk SSSR, Otd. Mat. Estestv. Nauk
,
7
, pp.
793
800
.
14.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2005
,
The Finite Element Method: Its Basis and Fundamentals
,
6th ed.
,
Elsevier Butterworth-Heinemann
,
MA
, p.
119
.
15.
Sugiyama
,
H.
, and
Yamashita
,
H.
,
2011
, “
Spatial Joint Constraints for the Absolute Nodal Coordinate Formulation Using the Non-Generalized Immediate Coordinates
,”
Multibody Syst. Dyn.
,
26
(1), pp.
15
36
.10.1007/s11044-010-9236-5
16.
MacNeal
,
R.
, and
Harder
,
R. L.
,
1985
, “
A Proposed Standard Set of Problems to Test Finite Element Accuracy
,”
Finite Elem. Anal. Des.
,
1
(
1
), pp.
3
20
.10.1016/0168-874X(85)90003-4
17.
Blevins
,
R. D.
,
1979
,
Formulas for Natural Frequency and Mode Shape
,
R. E. Krieger Publishing, Malabar
, p.
240
.
18.
Den Hartog
,
J. P.
,
1952
,
Advanced Strength of Materials
,
Dover
,
New York
, p.
128
.
19.
Taber
,
L. A.
,
1982
, “
Large Deflection of a Fluid-Filled Spherical Shell Under a Point Load
,”
ASME J. Appl. Mech.
,
49
(
1
), pp.
121
128
.10.1115/1.3161953
20.
Simo
,
J. C.
,
Fox
,
D. D.
, and
Rifai
,
M. S.
,
1990
, “
On a Stress Resultant Geometrically Exact Shell Model. Part III: Computational Aspects of the Nonlinear Theory
,”
Comput. Methods Appl. Mech. Eng.
,
79
(
1
), pp.
21
70
.10.1016/0045-7825(90)90094-3
21.
Simo
,
J. C.
,
Rifai
,
M. S.
, and
Fox
,
D.
,
1990
, “
On a Stress Resultant Geometrically Exact Shell Model. Part IV: Variable Thickness Shells With Through-the-Thickness Stretching
,”
Comput. Methods Appl. Mech. Eng.
,
81
(
1
), pp.
91
126
.10.1016/0045-7825(90)90143-A
You do not currently have access to this content.